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25. In a reversible cycle 100 k.J of heat is received at 500 K ; then an adiabatic expansion occurs to 400 K, at
which temperature 50 kJ of heat is received, then a further adiabatic expansion to 300 K at which
temperature 100 kJ of heat is rejected :

(£) Find the change in entropy which occurs as the system is restored to its initial state in the remainder

of the eycle.
(if) If during the remainder of the cycie heat is transferred only at 400 K, how much heat is transferred and
in what direction ? [Ans. 0.008 kJ/K ; + 3.2 kJ]
28. 1 kg of air is compressed according to the law pv'* = constant from 1.03 bar and 15°C to 16.45 bar.
Calculate the change in entropy. [Ans, 0.255 kJ/kg K]

27. A quantity of gas (mean molecular weight 36.2) is compressed according to the law pv™ = constant, the
initial pressure and volume being 1.03 bar and 0.98 m?® respectively. The temperature at the start of
compression is 17°C and at the end it is 115°C. The amount of heat rejected during compression is 3.78 kJ,
¢,=0.92. Calculate :

(i) Value of r, (i) Final pressure, (iii) Change in entropy.
[Ans, (£) 1.33 ; (i) 1.107 bar ; (iii) 0.228 kJ/kg K]
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Availability and Irreversibility

6.1. Available and unavailable energy. 6.2. Available energy referred to a cycle. 6.3. Decrease in
available energy when heat is transferred through a finite temperature difference. 6.4. Availability
in non-flow systems. 6.5. Availability in steady flow systems. 6.6. Helmholtz and Gibbs functions.
6.7. Irreversibility. 6.8. Effectiveness—Highlights—Objective Type Questions—Theoretical
Questions—Unsolved Examples.

6.1. AVATLABLE AND UNAVAILABLE ENERGY

There are many forms in which an energy can exist. But even under ideal conditions all
these forms cannot be converted completely into work. This indicates that energy has two parts :

— Auvailable part.
— Unavailable part.

‘Available energy’ is the maximum portion of energy which could be converted into
useful work by ideal processes which reduce the system to a dead state (a state in equilibrium
with the earth and its atmosphere). Because there can be only one value for maximum work which
the system alone could do while descending to its dead state, it follows immediately that ‘Available
energy’ is a property.

A system which has a pressure difference from that of surroundings, work can be obtained
from an expansion process, and if the system has a different temperature, heat can be transferred
to a cycle and work can be obtained. But when the temperature and pressure becomes equal to that
of the earth, transfer of energy ceases, and although the system contains internal energy, this
energy is unavailable.

Summarily available energy denote, the latent capability of energy to do work, and in this
sense it can be applied to energy in the system or in the surroundings.

The theoretical maximum amount of work which can be obtained from a system at any
state p, and T, when operating with a reservoir at the constant pressure and temperature p, and
T, is called ‘availability’.

6.2. AVAILABLE ENERGY REFERRED TO A CYCLE

The available energy (A.E.) or the available part of the energy supplied is the maximum
work output obtainable from a certain heat input in a cyclic heat engine (Fig. 6.1). The minimum
energy that has to be rejected to the sink by the second law is called the unavailable energy
(U.E.), or the unavailable part of the energy supplied.

- Q, = AE. + UE.
or W_ . =AE =@ - UE.
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For the given values of the source temperature 7', and
sink temperature T, the reversible efficiency,

T,
L] _l_Ti

For a given T, 0, will increase with the decrease of

T,. The lowest practicable temperature of heat rejection is the
temperature of the surroundings, T,.

T,
el 20
nma:c"l Tl
T
and Wma.t:[l_'q—"(llJ Q1

Consider a finite process I-m, in which heat is supplied
reversibly to a heat engine (Fig. 6.2). Taking an elementary
cycle, if d@, is the heat received by the engine reversibly at T,

T,-T,
Then  @Wne =“'7"dgQ,

T,
=dQ, - ﬁlalQ1 = AE.

dq, e
A //
—
é
7
K /

307

HE |[—W,, =AE

1Q, = UE.

Sink
T,

Fig. 6.1. Available and unavailable
energy in a cycle.

Fig. 6.2. Availability of energy.

* 3

For the heat engine receiving heat for the whole process I-m, and rejecting heat at T,

J;md j dQ, - _[ TO dQ,
W, ..=AE=Q, - Tn (s, —s,)

or unavailable energy, UE =@,_,-W,_.

or UE. = T, (5, - 5,,)

..(6.1)
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Fig. 6.3. Unavailable energy by the second law of thermodynamics.

g

Thus unavailable energy is the product of the lowest temperature of heat rejection, and the
change of entropy of the system during the process of supplying heat (Fig. 6.3).

6.3. DECREASE IN AVAILABLE ENERGY WHEN HEAT IS TRANSFERRED THROUGH
A FINITE TEMPERATURE DIFFERENCE

When transfer of heat takes place through a finite temperature difference, there is a de-
crease in the availability of energy so transferred. Consider a reversible heat engine operating
between temperatures T, and T, (Fig. 6.4). Then

Q1=T-A5;
Q=T As ;
and W=AE. =(T, - Ty] As.

Assume that heat @, is transferred through a finite temperature difference from the reser-
voir or source at T to the engine absorbing heat at 7', lower than T, (Fig. 6.4). The availability of
@, as received by the engine at T’ can be found by allowing the engine to operate reversibly in a
cycle between T," and T, receiving @, and rejecting @,

Now, Q= T8s = T/As
T,>T/
As’ > As
Q, =Ty As
Q, = T, As
As" > As
Q) >,
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Fig. 6.4. Carnot-cycle.
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Fig. 6.5. Increase in unavailable energy due to heat transfer
through a finite temperature difference.
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B W=Q1“Q2’=T1’AS"T0AS’
and W=Q,-Q,=T,45s-T, As

W < W, because @, > @,

The loss of available energy due to irreversible heat transfer through finite temperature
difference between the source and the working fluid during the heat addition process is given as :

W—W=Q2"Qz

= T, (As" - As)
i.e., Decrease in available energy, A.E.
=T, (As’ — As) ..{(6.2)

Thus the decrease in A.E. is the product of the lowest feasible temperature of heat rejection
and the additional entropy change in the system while receiving heat irreversibly, compared to the
case of reversible heat transfer from the same source. The greater is the temperature difference
(T, — T\, the greater is the heat rejection Q, and the greater will be the unavailable part of the
energy supplied (Fig. 6.5).

Energy is said to be degraded each time it flows through a finite temperature difference.
That is, why the second law of thermodynamics is sometimes called the law of the degradation of
energy, and energy is said to ‘run down hill’.

6.4. AVAILABILITY IN NON-FLOW SYSTEMS

Let us consider a system consisting of a fluid in a cylinder behind a piston, the fluid expand-
ing revergibly from initial condition of p, and T to final atmospheric conditions of p, and T,
Imagine also that the system works in conjunction with a reversible heat engine which receives
heat reversibly from the fluid in the cylinder such that the working substance of the heat engine
follows the cycle O1LO as shown in Fig. 6.6, where s, = 5; and T, = T} (the only possible way in
which this could occur would be if an infinite number of reversible heat engines were arranged in
parallel, each operating on a Carnot cycle, each one receiving heat at a different constant tempera-
ture and each one rejecting heat at 7). The work done by the engine is given by :

Cylinder—\ Piston
7 T4 Py
s
System %‘——wﬂui ’ T 1
1
A""Po
Po
‘FQ
[HE e NV Zd)
o]
TTols, ~ 8g) >s
Sg 5,

(@ (b)
Fig.6.6
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W

engine

= Heat supplied — Heat rejected
=@ — Ty (s; — 5y )
The heat supplied to the engine is equal to the heat rejected by the fluid in the cylinder.
Therefore, for the fluid in the cylinder undergoing the process 1 to 0, we have
- Q@ =y —u) + Wy
ie., Woaia = (@, ~uy)— @ .(E0)
Adding eqns. (i) and (i), we get
Whuid + Wengine = [(1) = 4g) - Q1+ [Q — T, (s, ~ 5¢)]
=y — ) = T (s, - 89)
The work done by the fluid on the piston is less than the total work done by the fluid, since
there is no work done on the atmosphere which is at constant pressure Py
t.e., Work done on atmosphere = py g~ vy)
Hence, maximum work available
=y —ug)— Ty (8, = 59) - Py (Vg — vy)
Note. When a fluid undergees a complete cycle then the net work done on the atmosphere is zero.

Woae = @y + povy — Tys)) — (g + povg = Tsg) ..(6.3)
W = 04— 0 ..[6.3 (a)]

The property, a = u + pyv — T;s (per unit mass) is called the non-flow availability function.
6.5. AVAILABILITY IN STEADY FLOW SYSTEMS

Consider a fluid flowing steadily with a velocity C, from a reservoir in which the pressure
and temperature remain constant at p, and 7 through an apparatus to atmospheric pressure of
Py Let the reservoir be at a height Z, from the datum, which can be taken at exit from the
apparatus, t.e., Z, = 0. For maximum work to be obtained from the apparatus the exit velocity, C,
must be zero. It can be shown as for article 6.4 that a reversible heat engine working between the
limits would reject T, (s, — s) units of heat, where T, is the atmospheric temperature. Thus, we
have

2
Wmax= {h1+%—+zlg] —hO_TO (81"80)

In several thermodynamic systems the kinetic and potential energy terms are negligible

ie., Wooe = (= T8} — (hy — Tysy)
=b-b,

The property, b = h — T;s (per unit mass) is called the steady-flow availability function.

[In the equation & = & — Ts ; the function ‘4’ (like the function ‘a’) is a composite property of
a system and its environment ; this is also known as Keenan functionl.

Note 1. The alternative names for availability and unavailable quantity T,As are energy and a energy
respectively.

2. The only difference between a = u + p v — Tys function and b = (h ~ T5) = {u+ pv — T;s) function is in
pressure only.

6.6. HELMHOLTZ AND GIBBS FUNCTIONS
The work done in a non-flow reversible system (per unit mass) is given by :
W=@Q - (u;—u,)
=Tds — (uy - u,)
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=T (s5— s — (up— u,)
ie., W= (u, — Ts)) — (ug— Tsy -.(6.4)
The term (z — Ts) is known as Helmholtz function. This gives maximum possible output
when the heat @ is transferred at constant temperature and is the case with a very large source.
If work against atmosphere is equal to p, (v, — v,), then the maximum work available,
W,... = W - work against atmosphere
=W-pylo,-v,y)
= (u; ~ Ts;) ~ (g — Tsy) — py vy — vy}
= (u, + pov, — T8;) — (ug + pgvg— Tsy)
= (hy— T8} — (hy— Tsy)
Le., Woe = 81— & ...(6.5)
where g = h — T.s is known as Gibb’s function or free energy function.
The maximum possible available work when system changes from 1 to 2 is given by

Wi =@ -8)-@—80=81-8 ..(B.6)
Similarly, for steady flow system the maximum work available is given by
W,.. = (g — &) + (KE, - KE,) + (PE, - PE,) -(8.7)

where K.E. and P.E. represent the kinetic and potential energies.
It may be noted that Gibb’s function g = (h — Ts) is & property of the system where availabil-
ity function a = (u + pgv — T8) is a composite property of the system and surroundings.
Again, a=u+pyp-Tys
b=u+pv-Tgs
g=u+pv—~Ts
When state 1 proceeds to dead state (zero state)
a=b=g
6.7. IRREVERSIBILITY
The actual work which a system does is always less than the idealized reversible work, and
the difference between the two is called the irreversibility of the process.
Thus, Irreversibility, =W __ - W ...(6.8)
This is also sometimes referred to as ‘degradation’ or ‘dissipation’.
For a non-flow process between the equilibrium states, when the system exchanges heat
only with environment, irreversibility (per unit mass),
i=[(u) = uy) — Tols; — 5)] — [y — uy) + Q]

=Ty (8,-8)-Q
= TO (As)system + TO (As)surr.
ie., i = Ty [(88) pp,,, + (B9),,, ] ..(6.9)
iz0

Similarly, for steady flow-process
i=W_. — W (per unit mass)

= I:[bl+%i+gzl]—[b2 +%i+gz2]]

_ [(hl+gzﬁ+gzl]-[h2+%i+g22]+ ]
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=Ty(s,~5)~@Q
= TO (As)system + TO (As)surr.
ie., i= Tu (Assystem + Assm'r.)
The same expression for irreversibility applies to both flow and non-flow processes.
The quantity T, (4s,,,,, + As,,,. ) represents (per unit mass) an increase in unavailable
energy (or energy).

6.8. EFFECTIVENESS

Effectiveness is defined as the ratio of actual useful work to the maximum useful work.
The useful output of a system is given by the increase of availability of the surroundings.

_ Increase of availability of surroundings
B Loss of availability of the system
For a compression or heating process the effectiveness is given by

Effectiveness, ...(6.10)

_ _Increase of availability of the system
Loss of availability of the surroundings

or €= _ﬂ'ﬂﬁL ..[6.10 (a)]
Wmax .useful

The effectiveness of an actual process is always less than unity. Thus effectiveness of a
process is the measure of the extent to which advantage has been taken of an opportunity to obtain
useful work.

Example 6.1. One kg of air is compressed polytropically from 1 bar pressure and tempera-
ture of 300 K to a pressure of 6.8 bar and temperature of 370 K. Determine the irreversibility if the
sink temperature is 293 K. Assume R = 0.287 kJ (kg K, ¢, = 1.004 kJ/kg K and c, = 0.716 kJ/kg K.

(UP.S.C.)

Solution. Irreversibility I =W __ - W,
~ W .. = Change in internal energy — T, x Change in entropy

or ~ W=y —u)) = Tls,—s))=W_,
or — Woaw = ¢,(Ty = T)) - Tjle, In (TY/T)) — R In (pyfp))]

= 0.716(370 — 300) - 293 x [1.005 In (370/300) — 0.287 In (6.8/1)]
or Wone = -149.53 ki/kg = W

{negative sign indicates that work is done on air)
The index of compression ‘n’ is given by

[(n—1)/n]
T, [&J

L= {nm
n-1_In(T;/7)) _In(370/300)
or n  In(py/p) In(68/1)
or n=1123
mR(T, -T,) 1x0287%(300-370)
= = = - 63.
Woctual o1 1158 1 163.33 kJ/kg

I=W, -W,, =- 14953 — (- 163.33) = 13.8 kd/kg. (Ans.)

Example 6.2. A system at 500 K receives 7200 kJ/min from a source at 1000 K. The
temperature of atmosphere is 300 K. Assuming that the temperatures of system and source
remain constant during heat transfer find out :
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(i) The entropy produced during heat transfer ;
(ii) The decrease in available energy after heat transfer.

Solution., Refer Fig. 6.7.

T4
1000 K
Ty --- <
500K
Tz F--= .
300K Increase in
To / g unavailable
/ / energy
A » s
—— AS SOUICE ——Pd—AS net—
¢ AS System ——————p

Fig. 6.7
Temperature of source, T, = 1000 K
Temperature of system, T,=500 K

Temperature of atmosphere, T, = 300 K

Heat received by the system, @ = 7200 kJ/min.

(i) Net change of entropy :

Change in entropy of the source during heat transfer

- :,_,—,?— = G2 - _ 7.2 kiminK
Change in entropy of the system during heat transfer
- % = 29 - 144 KiminK

The net change of entropy, AS = — 7.2 + 144 = 7.2 kJ/min-K. (Ans.)
(if) Decrease in available energy :
Available energy with source

= (1000 — 300) x 7.2 = 5040 kJ
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Available energy with the system
= (500 - 300) x 14.4 = 2880 kJ
Decrease in available energy = 5040 — 2880 = 2160 koJ, (Ans.)

Also, increase in available energy
=T0(S2 - Sl) =Tﬂ AS
=300x72=2160kJ

Exz~ ole 6.3. 8 kg of air at 650 K and 5.5 bar pressure is enclosed in a closed system. If the
atmosphere temperature and pressure are 300 K and 1 bar respectively, determine :

(i) The availability if the system goes through the ideal work producing process.

(1) The availability and effectiveness if the air is cooled at constant pressure to atmos-

pheric temperature without bringing it to complete dead state. Take ¢, = 0.718 kJ/kg K ;
c,= 1.005 kJikg K.

Solution. Mass of air, m =8kg
Temperature, T, =650 K
Pressure, p, = 5.5 bar
Atmospheric pressure, Py =1Dbar

Atmospheric temperature, T,=300K

For air : ¢, = 0.718 kJ/kg K ; ¢, = 1.005 kJ/kg K.

{{) Change in available energy (for bringing the system to dead state),
= mf(u, — uyt— Tyhs]

T,
Also As = ¢, log, (Tﬂ + R log, ?—D
Using the ideal gas equation,
2 _ Py
LT

U T
= = ?x% = 2.54
As = 0.718 log, [%J + 0.287 log, [ﬁ}
= {0,555 + (- 0.267) = 0.288 kJ/kg K
Change in available energy
= mi(u, — ug) ~ Toasl = mle (T — Ty) — ToAs]
= 8[0.718{650 — 300) — 300 x 0.288]} = 1319.2 kJ

Loss of availability per unit mass during the process

= p, (v, — v;) per unit mass

Total loss of availability = p(V, - V,)

mRT,  8x287x650 . [ , _ _mRT
= = = 2. L pV=mRT orV =——
But V- s =278 m
and V, = 2.54 x 2.713 = 6.891 m®

1x10°

Loss of availability = 105 (6.891 — 2.713) = 417.8 kJ. (Ans.)
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(ii) Heat transferred during cooling {constant pressure) process
=m. ¢, (T, - T)
= 8 x 1.005 (650 — 300} = 2814 kJ
Change in entropy during cooling
T;
=1
As = me, log, [TO)

= 8 x 1.005 x log, [%} - 6216 kJK

/
Unavailable energy =T, AS
= 300 x 6.216 = 1864.8 kJ
Available energy = 2814 — 18648 = 949.2 kJ. (Ans.)

Available energy
Change in available energy

949.2
1319.2
t¥Example 6.4. In a power station, the saturated steam is generated at 200°C by transfer-

ring the heat from hot gases in a steam boiler. Find the increase in total entropy of the combined
system of gas and water and increase in unavailable energy due to irreversible heat transfer. The
gases are cooled from 1000°C to 500°C and all the heat from gases goes to water. Assume water
enters the boiler at saturated condition and leaves as saturated steam.

Take : c,, (for gas) = 1.0 kJikg K, hy, (latent heat of steam at 200°C) = 1940.7 kJ / kg.

Atmospheric temperature = 20°C.
Obtain the results on the basis of 1 kg of water.
Solution. Refer Fig. 6.8.

Effectiveness, € =

It

= 0.719. (Ans.)

Temperature of saturation steam =200+ 273 =473 K

Initial temperature of gases = 1000 + 273 = 1273 K

Final temperature of gases =500+ 273=773 K

For gases : cpe = 1 kdkg K

Latent heat of steam of 200°C

saturation temperature, hfg = 1940.7 kJ/kg

Atmospheric temperature =20+273=293 K

Heat lost by gases = Heat gained by 1 kg saturated water when it is converted to steam at
200°C.

: mye,, (1273 - 773) = 1940.7

[where m, = mass of gases, Cpg = specific heat of gas at constant pressure]

e, ' my= 10% (lfz‘%?— 773) = 388 kg

Change of entropy of m e kg of gas,

773
(a8), = my ¢, log, (1273]

= 3.88 x 1.0 x log, (%J =— 1935 kLJ/K
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1273 K
&
F
773K
Steam
473K P
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293 K 3) 7 / /_unavailable
— e =
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>S5

e s, ———]

Fig. 6.8

Change of entropy of water {(per kg) when it is converted into steam,

he 19407
T, ~ (200+273)
Net change in entropy due to heat transfer
= - 1935 + 4103 = 2.168 kJ/K. (Ans.)
Increase in unavailable energy due to heat transfer
= 293 x 2.168, ie., cross hatched area
= 635.22 kJ per kg of steam formed. (Ans.)
Example 6.5. 3 kg of gas (c, = 0.81 kJ/kg K) initially at 2.5 bar and 400 K receives 600 kJ

of heat from an infinite source at 1200 K. If the surrounding temperature is 290 K, find the loss
in available energy due to above heat transfer.

Solution. Refer Fig. 6.9.

(4s), = = 4.103 kJ/kg K.

Mass of gas, m, = 3 kg

Initial pressure of gas = 2.5 bar
Initial temperature, T/ =400 K
Quantity of heat received by gas, & =600 kJ
Specific heat of gas, c, = 0.81 kd’kg K
Surrounding temperature =290 K

Temperature of infinite source, T1 =1200 X
Heat received by the gas is given by,
Q= mge, (T, - T,)
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. T4
Infinite
2 source\ 1
1200 K <
847 K Gas 2
400 K —x

6 » S I3 6:
Fig.6.9
600 = 3 x 0.81 (T, — 400)
, 600
Ty = — + 400 = 646.9 K say 647 K
3x0.81
Available energy with the source
= area 1-2-3-4-1
600
= (1200 — 290) x 1200 = 455 kJ
Change in entropy of the gas
T ’
= my, log, [ T?J =3 x 081 x log, (%) - 1.168 kI/K
1
Unavatlability of the gas = area 3"- 4- §5’- 6- %

=290 x 1.168 = 338.72 kJ

Available energy with the gas

= 600 — 338.72 = 261.28 kJ
~. Loss in available energy due to heat transfer
= 455 — 261.28 = 193.72 kJ. (Ans.)

=z Example 6.6. Calculate the unavailable energy in 60 kg of water at 60°C with respect to

the surroundings at 6°C, the pressure of water being 1 atmosphere.

Solution. Refer Fig. 6.10.

Mass of water, m = 60 kg
Temperature of water, T, =60+273=333K
Temperature of surroundings, T,, = 6 + 273 = 279 K
Pressure of water, p = 1 atm.

If the water is cooled at a constant pressure of 1 atm. from 60°C to 6°C the heat given up

may be used as a sowrce for a series of Carnot engines each using the surroundings as a sink. 1t
is assumed that the amount of energy received by any engine is small relative to that in the source
and temperature of the source does not change while heat is being exchanged with the engine.
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Fig. 6.10

Consider that the source has fallen to temperature T, at which level there operates a Carnot
engine which takes in heat at this temperature and rejects heat at T7; = 279 K. If &s is the entropy
change of water, the work obtained is

W=—m(T-T, &s
where 8s is negative.

¢, 0T T
W=-60(T-Ty 2 =-60e, ( ‘TOJE’T

With a very great number of engines in the series, the total work (maximum) obtainable
when the water is cooled from 333 K to 279 K would be
W, .. = Available energy

279 T
= -~ lim. 2600}? ( '"TOJ 8T
333
333 T
=1 60 - 04T
19 P ( T }

333
=60 c, [(333 ~279) - 279 log, (279)]

= 60 x 4.187 (54 - 49.36) = 1165.7 kd
Also, @, = 60 x 4.187 x (333 - 279) = 13565.9 kJ
- Unavailable energy = @, - W___

= 135659 - 1165.7 = 12400.2 kJ. {(Ans.)

Example 6.7. 15 kg of water is heated in an insulated tank by a churning process from
300 K to 340 K. If the surrounding temperature is 300 K, find the loss in availability for the process.

Solution. Mass of water, m = 15 kg
Temperature, T, =340 K
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Surrounding temperature, T,=300K
Specific heat of water, c, = 4187 klkg K
Loss in availability :
Work added during churning
= Increase in enthalpy of the water
=15 x 4.187 x (340 — 300) = 2512.2 kJ
Now the energy in the water = 2512.2 k.J
The availability out of this energy is given by
m[(u, — uy) — Ty As]

T
ot 8
As = ¢ lag, (T[)]

340
As = 4.187 log, (m) = 0.524 kJ/’kg K

Available energy
=m[c, (Ty— Ty — T, A3l
= 15 [4.187 (340 — 300) — 300 x 0.524] = 158.7 kJ
Loss in availability
= 2508 — 158.7 = 2349.3 kJ. (Ans.)
This shows that conversion of work into heat is highly irreversible process (since out of

2512.2 kJ of work energy supplied to increase the temperature, only 158.7 kJ will be available
again for conversion into work).

Example 6.8. 5 kg of air at 550 K and 4 bar is enclosed in a closed system.
(i) Determine the availability of the system if the surrounding pressure and temperature

are 1 bar and 290 K respectively.

(ii) If the air is cooled at constant pressure to the atmospheric temperature, determine the

availability and effectiveness.

Solution. Mass of air, m=>5kg

Temperature, T, =550 K

Pressure, p, = 4 bar = 4 x 10° N/m?
Temperature, T,=T;=290K

Pressure, Py =Py =1bar =1 x 10° N/m?

(i} Availability of the system ;
Availability of the system is
= m[(ul - uo) - To(sl _ SO)] = m[cv(Tl - TO) - TO AS]

T, ﬂ)
= =1 _
As = ¢, log, T, R log, ( 2o

= 1.005 log, (g—g—%) — 0.287 log, (%]

=0.643 - 0.397 = 0.246 kJ/kg K

Availability of the system
=m [c, (T} — Ty — T,as]
= 5[0.718 (550 — 280) — 290 x 0.246] = 576.7 kJ. (Ans.)
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(if) Heat transferred during cooling
Q@=mxc, x (T - Ty
= 5 x 1.005 x (550 — 290)
=13065 kJ ... heat lost by the system
Change of entropy during cooling

T
il 4
AS=mx c, x log, (TOJ

0
=5 x 1.005 x log, (%) = 3.216 kJ/K

Unavailable portion of this energy
=T, . (AS) = 290 x 3.216 = 932.64 kJ
1306.5 — 932.64 = 373.86 kJ. (Ans.)

. Available energy 373.86
Effectiveness, € = Availability of the system = 5767

= 0,648 or 64.8%. (Ans.)

Available energy
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Example 6.9. Air at the rate of 25 kg/min is compressed in a centrifugal air compressor

from I bar to 2 bar. The temperature increases from 15°C to 100°C during compression. Deter-
mine actual and minimum power required to run the compressor. The surrounding air tempera-
ture is 15°C.

Neglect the heat interaction between the compressor and surroundings and changes in

potential and kinetic energy.

Take for air, ¢, = 1005 kJikg K, R = 0.287 kJikg K.
Solution. Rate of flow of air, m = 25 kg/min.

Initial pressure, p, = 1bar
Final pressure, Py = 2.0 bar
Initial temperature, T)=Ty=15+273=288 K
Final temperature, T,=100+273 =373 K.
Applying energy equation to compressor,
W m=ha— Ry las @ =0, APE = 0, AKE =

=c, (Ty,— T,) = 1.005 (373 — 288) = 85.4 kd/kg
Total actua! work done/min
= 25 x 85.4 = 2135 kJ/min

= ?é% = 35.58 kJ/s = 35.58 kW

The minimum work required is given by the increase in availability of the air stream.
Woin = by — by ={hy— h)) - Ty (55— 5)

T.
S,-81=¢, log, [Tf) - R log, [%12) ...per unit mass
373) 2.0
= 1.005 log, [mj - 0.287 log, (T]

= 0.2599 -~ 0.1989 = 0.061 kJ/kg K
Woin = thy— hy) — Tis, — 5))

0]
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= 85.4 — 288 x 0.061 = 67.8 kJkg
~. Minimum work required

% = 28.25 kd/s = 28.25 kW. (Ans.)

Example 6.10. ! kg of oxygen at 1 bar and 450 K is mixed with 1 kg of hydrogen at the
same temperature and pressure by removing the diaphragm as shown in Fig. 6.11. Determine the
loss in availability if the surrounding temperature is 290 K.

Assume that the system is fully isolated.
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Fig.6.11

Solution. Mase of oxygen, Mg, =1 kg

Mass of hydrogen, my, = 1kg
Pressure, p = 1 bar = 1 x 105 N/m?
Temperature, To2 =TH2 =450 K
Surrounding temperature =200 K
Characteristic gas constant of O,,
_ fo _ 8314
Ro, = Mo, =35 = 259.6 J/&kg K
2
Now to find volume of O, using the relation,
pv = mRT
_ mRT _ 1x2596x450 _ s
v= 5 = L 105 = 1.168 m
ie., Up, = 2.336 m®
Characteristic gas constant of H,,
Ry = .o . 8314
H, My, 5 4157 J/kg K
1x 4157 x 450
Vol f H.,, by, = ~———2" = 18, 3
olume of H, H, <10 8.706 m

Total volume after mixing
= lg, +ln, = 1168 + 18.706

= 19.874 m?

The partial pressure of each gas changes after the mixing even though the temperature is
the same due to increase in volume.
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ie.,

Change in entropy of oxygen

)
= R()z Ioge a
= 259.6 log, [19'874] = 735.7 J/K
1.168
Change in entropy of hydrogen
19.874
= Vo _ —_
= Ry, log, o = 4157 log, [1&706]

= 251.78 J/K
Net change in entropy,
AS = 735.7 + 251.78 = 987.48 J/K
Loss in availability

290 x 98748
=TAS =290 x 98748 J = 1P kJ = 286.36 kJ

Loss in availability = 286.36 kJ. (Ans.)
wwExample 6.11. Calculate the decrease in available energy when 20 kg of water at 90°C

mixes with 30 kg of water at 30°C, the pressure being taken as constant and the temperature of
the surroundings being 10°C.

by,

Take c, of water as 4.18 kJ/kg K.

Solution. Temperature of surrounding, T, = 10 + 273 = 283 K

Specific heat of water, ¢, = 4.18 ki/kg K

The available energy of a system of mass m, specific heat ¢y and at temperature T, 1s given

' L0-2)
Available energy, AE. = me, T, 7 | dT

Now, available energy of 20 kg of water at 90°C,

90 + 273)[1 283)

(AE)y,, = 20 x 418 _[( T

10+ 273

- 836 {(363 - 283) - 283 loge(ziég)]

= 83.6 (80 — 70.45) = 798.38 kJ
Available energy of 30 kg of water at 30°C,

30 +273) 983
(1-28) ar

(AE)yq = 30 x 4.18 f T

10 + 273)

303
- 303 - 283)- 2831 et
=30 x 4.18 [( ) og, (283]]

=125.4 (20 - 19.32) = 85.27 kJ
Total available energy,
(AE)y = (AE)y  + (AE)y
= 798.38 + 85.27 = 883.65 kJ
If t°C is the final temperature after mixing, then
20 x 4.18 x (90 — ¢) = 30 x 4.18 (¢ — 30)
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or 2090 ~ £) = 30 (¢ - 30)
20x90+30x30
t= "Tgp¥30  =54C

Total mass after mixing = 20 + 30 = 50 kg
Available energy of 50 kg of water at 54°C

327
(A'E')ﬁokg =50 x 4,18 l:(327 —283) - 283 log, (m)]

= 209 (44 — 40.89) = 649.99 kJ

Decrease in available energy due to mixing
= Total energy before mixing — Total energy after mixing
= 883.65 — 649.99 = 233.66 kJ. (Ans.)

¥ Example 6.12, In an heat exchanger (parallel flow type) waters enter at 50°C and leaves

at 70°C while oil (specific gravity = 0.82, specific heat = 2.6 kJ/kg K) enters at 240°C and leaves
at 90°C. If the surrounding temperature is 27°C determine the loss in availability on the basis of
one kg of oil per second.

Solution. Refer Fig. 6.12.

T4 =240°C
(513K) Oil

Tee = 90°C

(363 K)

Tie = 70°C

/‘Tater (343 K)
Twi=50°C
(323 K}

s —

Fig.6.12
Inlet temperature of water, T, =50°C = 323 K
Outlet temperature of water, T, = 70°C = 343 K

Inlet temperature of oil, T, =240°C =513 K
Outlet temperature of oil, T,, =90°C =363 K
Specific gravity of oil = 0.82

Specific heat of oil
Surrounding temperature, T,

2.6 kd/kg K
27 + 273 = 300 K.
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Loss in availability :
Consider one kg of oil.
Heat lost by il = Heat gained by water

My X €, % (T, -T,)= m, X c,, x (Ty,~ T)
where ¢,, = Specific heat of oil (2.6 kd/kg K),
¢, = Specific heat of water (4.18 kJ/kg K), and
m, = Mass of 0il ( = 1 kg).
m, = Mass of water ( = ?)
1 x 26 x(513 -363) = m, x 418 x (343 - 323)

or 390 =836 m,_ or m, = 4.66 kg
Entropy change of water

T
=, ¢, o, 7% = 466 x 4.18 x log, [%g—) = 117 kI/K
1

Entropy change of oil

01

T
=myg,, log, [T"’J =1 x 2.6 log, (%J = - 0.899 kJ/K
Change in availability of water

= myle, (T, — To)1 = T, (AS),

= 4.66[(4.18 (343 - 323)] — 300 x 1.17 = 38.57 kJ
+ve sign indicates an increase in availability
Change in availability of oil

= mo[cpo( T02 - T01 )] - TO (AS)()]

= 1[2.6(363 — 513)] - 300 x (- 0.899) = — 120.3 kJ/K
- Loss in availability

=—120.3 + 38.57 = - 81.73 kJ. (Ans.)
{—ve sign indicates the loss).

Example 6.13. 1 kg of ice at 0°C is mixed with 12 kg of water at 27°C. Assuming the
surrounding temperature as 15°C, calculate the net increase in entropy and unavailable energy
when the system reaches common temperature :

Given : Specific heat of water = 4.18 kd/kg K ; specific heat of ice = 2.1 kJ/kg K and enthalpy
of fusion of ice (latent heat) = 333.5 kJ/kg.

Solution. Mass of ice, m, =1kg
Temperature of ice, T,.=0+273=27T3K
Mass of water, m, .. =12 kg

Temperature of water, T puser = 27 + 273 = 300 K
Surrounding temperature, T, =15 + 273 = 288 K
Specific heat of water 4.18 kd/kg K
Specific heat of ice = 2.1 kJ/kg K

333.5 kd/kg

Latent heat of ice



326

ie.,
or
or

ENGINEERING THERMODYNAMICS

Let T, = common temperature when heat flows between ice and water stops.
Heat lost by water = Heat gained by ice
12 % 4.18(300 — T)) = 418(T, — 273) + 333.5
15048 — 50.16T, = 4.18T, — 1141.14 + 333.5
54.34 T, = 15855.64
T, = 2918 K or 18.8°C.

Change of entropy of water =12 x 4.18 log, (33%6%) =- 139 kJ/K

_ 291.8) 3335
Change of entropy of ice =1x 4.18 log, [ 273 ) + 3 1.499 kJ/K
Net change of entropy, AS =—1.39 + 1.499 = 0.109 kJ/K

Hence, net increase in entropy = 0.109 kJ/K. (Ans.)
Increase in unavailable energy = T\ AS = 288 x 0.109 = 31.39 kJ. (Ans.)

ssExample 6.14. A vapour, in a certain process, while condensing at 400°C, transfers heat

to water at 200°C. The resulting steam is used in a power cycle which rejects heat at 30°C.

What is the fraction of the available energy in the heat transferred from the process vapour

at 400°C that is lost due to the irreversible heat transfer at 200°C ?

Solution. Refer Fig. 6.13.

TA
Q,
T, 673K |----——» M
v
T, @473 K) |- - DSy, T
v
v A 4
A
P N W Increase in
T, (303 K)|----
o ) A “ / L~ unavailable
S ﬁ energy
ks
—— A" ——— ™
Fig.6.13
Temperature of vapour, T,=400 +273 =673 K
Temperature of water, T, =200+ 273 =473 K

Temperature at which heat is rejected, 7, = 30 + 273 = 303 K
LMNP (Fig. 6.13) would have been the power cycle, if there was no temperature difference

between the vapour condensing and the vapour evaporating, and the area under NP would have
been the unavailable energy. RTWP is the power cycle when the vapour condenses at 400°C and



AVAILABILITY AND IRREVERSIBILITY 327

the water evaporates at 200°C. The unavailable energy becomes the area under PW. Therefore, the
increase in unavailable energy due to irreversible heat transfer is represented by the area under
NW.

Now, Q, = T\As = T/As
Ay T
As Ty
W = Work done in cycle LMNP
=(T, - Ty As ...per unit mass
W' = Work done in cycle RTWP
={T,~ Ty As"  ..per unit mass

The fraction of energy that becomes unavailable due to irreversible heat transfer,

wW-w _(H_TO)M~(ﬂ_T0)M’ _ TO (As" - As)
v (T] - To)hs = T - Ty)bs

As’ T
&) (7]
T G -Ty T M -Ty
L@ -T)  303673-473)
T (T -Ty) = 473673 ~303) = 0-346
Hence the fraction of energy that becomes unavailable = 0.346 or 34.6%. (Ans.)
Example 6.15. A liquid is heated at approximately constant pressure from 20°C to 80°C
by passing it through tubes which are immersed in a furnace. The furnace temperature is con-
stant at 1500°C. Calculate the effectiveness of the heating process when the atmospheric tempera-
ture is 15°C.
Take specific heat of liguid as 6.3 kJ/kg K.
Solution, Initial temperature of fluid, T, = 20 + 273 = 293 K

Final temperature of fluid, T,=80+273=353K
Temperature of the furnace, T, = 1500 + 273 = 1773 K
Atmospheric temperature, T,=15+273 =288 K
Specific heat of liquid, ¢, = 6.35 kdkg K

Increase of availability of the liquid
=by — by = (hy— by} — Tyls, - s1)

T
ie., by—b = (T,-T)-Tyxc,log, 7

353
= 6.3 (353 — 293) - 288 x 6.3 x log, [ﬁ) = 39.98 kJ/kg

Now, the heat rejected by the furnace = Heat supplied to the liquid, (hy = hy).

If this quantity of heat were supplied to a heat engine operating on the Carnot cycle its
thermal efficiency would be,

Ty 1288
N, = T, | = To73 | = 0.837 (or 83.7%)

Work which could be obtained from a heat engine
= Heat supplied x Thermal efficiency
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i.e., Possible work of heat engine = (h, — A,} x 0.837
The possible work from a heat engine is a measure of the loss of availability of the furnace.
Loss of availability of surrcundings
= (hy— hy) x 0.837 = ¢, (T, — T} x 0.837
= 6.3 ( 353 - 293) x 0.837 = 316.38 kJ/kg
Then, effectiveness of the heating process,
Increase of availability of the liquid
Loss of availability of surroundings

39.98
= m = 0.1263 or 12.63%. (AII.E.)

Note, The very low value of effectiveness reflects the irreversibility of the transfer of heat through a large
temperature difference. If the furnace temperature were much lower then process would be much more effective,
although the heat transferred to the liquid would remain the same.

Example 6.16. Air at 20°C is to be heated to 50°C by mixing it in steady flow with a
quantity of air at 100°C. Assuming that the mixing process is adiabatic and neglecting changes in
kinetic and potential energy, calculate :

(i) The ratio of mass flow of air initially at 100°C to that initially af 20°C.
(ii) The effectiveness of heating process, if the atmospheric temperature is 20°C.
Solution. (i) Let, x = ratio of mass flows.

Stream 1 = air at 20°C (T, = 20 + 273 = 293 K)

Stream 2 = air at 100°C (T, = 100 + 273 = 373 K)

Stream 3 = air at 50°C (T, = 50 + 273 = 323 K)

€ =

If, ¢, = Specific heat of air constant pressure
Then e Ty + xc, Ty = (1 + x)c,Ty
or cpT1 + xe, Ty = ¢, Ty + xc, Ty
or xe(Ty— Tq) = ¢ (Ty— T
Le., xc,(373 ~ 323) = ¢,(323 — 293)
30
*= gy = 0.6. (Ans.)

(ii) Let the system considered be a stream of air of unit mass, heated from 20°C to 50°C.
Increase of availability of system

=by— by =(hy—h) - To(s3—8,) = ¢,(T3 - T)) = Tyls;—sy)

= 1.005(323 — 293) — 293(s, — 5,) [- Ty=20+273 =293 K|

T,
Also, sy~ 5, = ¢, log, T = 1005 log, o2z = 0.0979 ki/kg K

Increase of availability of system
= 1.0056 x 30 — 293 x 0.0979 = 1.465 kJ/kg.

The system, which is the air being heated, is ‘surrounded’ by the air stream being cooled.
Therefore, the loss of availability of the surroundings is given by, x(b, — bj).

i.e., Loss of availability of surroundings
= xl(hy ~ hg) = Tyls, — s4)1 = 0.6[c, (T, — T;) — Tylsy — 85)]

= 06 l:l.005 (373 - 323) — 293 x 1.005 log, (ﬁﬂ

323
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= 0.6(50.25 — 42.38] = 4.722 kJ/kg
Increase of availability of system

Effecti =
ffectiveness Loss of availability of surroundings
= 1465 _ 0.31 or 31%. (Ans.)
4,722

The low figure for the effectiveness is an indication of the highly irreversible nature of the
mixing process.

wExample 6.17. 2.5 kg of air at 6 bar, 90°C expands adiabatically is a closed system until

its volume is doubled and its temperature becomes equal to that of the surroundings which is at
I bar, 5°C. For this process determine :

i) The maximum work ;
' (if) The change in availability ;
(iif) The irreversibility.
For air take : ¢, = 0.718 kJ/kg K, R = 0.287 kJ/kg K.
Solution. Mass of air, m = 2.5 kg
Initial pressure of air, p, = 6 bar = 6 x 10° N/m?

V.
Ratio of final to initial volume, ;,—f' =2
Initial temperature of air, T, = 90 + 273 = 363 K
Final pressure of air, p, = 1 bar = 1 x 10° N/m?
Final temperature of air, T, = T, = 5 + 273 = 278 K
From the property relation

TdS = dU + pdV

dU _ pdv
or dS = T + T
ds = Mol mRgy [ u=c, dT and pV = mRT or%:—-—-—nvm]

- The entropy change of air between the initial and final states is
2 2me dT (2mRdV
dg=[ ety |
I1 1 T 1V

T \L
or 8, - 8, = me, log, _’i-"T + mR log, Vl
() The maximum work, W___:
Also, Woae = Uy = Up) — Ti(8, - 8,)
T Uy
= m| (T} ~T3)+Ty|c, log, == + R log, =
Ty oy

=25 [0.718(363 —278)+278 (0.718 log, [;;—g) + 0287 log, 2]}

= 2.5[61.03 + 278(— 0.1915 + 0.1989)] = 157.7 kJ
Hence, maximum work = 1587.7 kJ. (Ans.)
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(ii) The change in availability :
The change in availability is given by,
A=Ay = (U - Uy = TS, = Sp) + po(Vy = V)
=W, 0+ Py (Vi = Vy)

iV, =mRT,
= 157.7 + py (V, — 2V,) = 157.7 = PV, v =R
5|
5
1577 1X10°[2:5 (0287 1000) x 363] _ 1149017
10 6x 10

Hence change in availability = 114.29 kJ. (Ans.)

(iii) The irreversibility ; I :

The irreversibility is given by
I= Wmax. wsefill

From the first law of thermodynamics,
W m=@-AU=-aU=U~U, [v @=0..adiabatic process]
I=(U, -U)- TS, —-8,) - (U, - Uy
= To(S; ~ S
= T(AS)
For adiabatic process, (AS) =0

Surr.

W

arctual

system

T. v
1=T, l:mcu log, ?2 +mR log, u_z}
1 1

=278 x 2.5 [0.718 log, (%)4— 0287 log, 2)

= 695(— 0.1915 + 0.1989) = 5.143 kd
Hence, the irreversibility = 5.143 kJ. (Ans.)

w=Example 6.18. In a turbine the air expands from 7 bar, 600°C to 1 bar, 250°C. During

expansion 9 kJ/kg of heat is lost to the surroundings which is at 1 bar, 15°C. Neglecting kinetic
energy and potential energy changes, determine per kg of air :

(i) The decrease in availability ;
(i{) The maximum work ;
(ii) The irreversibility.
For air, take : €, = 1.005 kJikg K, h = cpT, where c, is constant.
Solution. Mass of air considered = 1 kg

Pressure, p, = 7 bar = 7 x 105 N/m?
Temperature, T, =600+ 273 =873 K
Pressure, P, = 1 bar = 1 x 10% N/m?
Temperature, T,=250 + 273 =523 K

Surrcunding temperature, Ty,=15+273 =288 K
Heat lost to the surroundings during expansion,
@ =9 kikg.
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(i) From the property relation,

TdS = dH - Vdp
_4dHd _Vdp
- T
m.c AT  mRdp
2 2m.c, dT  2mRdp v h=c,T,dh=c,dT
_ p _
or LdS - J.I T L o dH = me,dT and pV = mRT
T Pz |orV = mRT
or -5'2—31=mcploge—3_m}g loge—2 = p
5 1451

For 1 kg of air
T, P
83— 8y = ¢, log, ‘TTI - R log, E

Now, the change in availability is given by
by = by = (hy — Tsy) ~ (hy — Tisy)
= (hy = hy) — Tlsy - s,)

D T.
=¢, (T,-T)-T, (R log, p—f ~¢, log, ;rj]

1 523
= 1.005(873 - 523) — 288 [0-287 log, (;J - 1005 log, (ﬁﬂ

= 351.75 — 288(- 0.5585 + 0.5149) = 364.3 kd/kg

i.e., Decrease in availability = 364.3 kJ/kg. (Ans.)

(i) The maximum work,
W, = Change in availability = 364.3 kJ/kg. (Ans.)

(iii) From steady flow energy eguation,
Q@+hi=W+h,
W= -h)+Q
=c, (T, -Ty)+ @
= 1.005(873 - 523) + (- 9) = 342.75 kJ/kg

The irreversibility,
I=W_ _-W
= 364.3 - 342.75 = 21.55 kJ/kg. (Ans.)

Alternatively, I = T (ASsymm + AS_ )
523 1), 9
= 2881005 + log, | 2= | - 0287 log, | = |+ ——
[ e [873] & (7] 288}
= 288 [~ 0.5149 + 0.5585 + 0.03125]
= 21.55 kJ/kg. |

Example 6.19. 1 kg of air undergoes a polytropic compression from 1 bar and 290 K to 6
bar and 400 K. If the temperature and pressure of the surroundings are 290 K and 1 bar respec-

tively, determine :
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(1) The irreversibility ;
(i) The effectiveness.
Take for air : ¢, = 1.005 kJikg K, c, = 0.718 kdikg K, R = 0.287 kJikg K.
Solution. Mass of air, m = 1 kg
Initial temperature, T, =T,=280K
Final temperature, T, =400 K
Initial pressure, P; = Pp = 1 bar
Final pressure, P, = 6 bar.
(i) The irreversibility, I :
We know that reversible work,
W, = Change in internal energy — T, x Change in entropy

T P
sgenfore 2o 2]

T

- 0118 400 - 200) - 290 [L005 og, (300 0287 e, 3

= 78.98 — 290 (0.3232 - 0.5142)

= 134.37 kJ/kg (- [-ve sign indicates that work is done on the air]
Actual work is given by
mR(T}, - Ty) _ R -T,) as m

w = =1kg
actual n-1 n-1 ke
The index n for the compression is given by :
n-1
Ty _ [.e_z_) "
I B
n-1 n-1
400 (6} = or 1379 = (6) "
290 1

n-1
log, 1.379 = (T] log, 6 or 03213 =1.7917 (T]

n—1 03213
—=T7o17 = 0.1793 or n = 1.218
0.287 (290 — 400)
= =— 144,
actual (1218 -1) 48 kJ

{-ve sign means that the work is done on the air)
Now, irreversibility =W _ - W__ .

= — 134.37 — (- 144.8) = 10.43 kdJ. (Ans.)
(ii) The effectiveness, € ;

c= Ve 13T 4 008 or 92.8%. (Ans.)
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Example 6.20. A flywheel whose moment of inertia is 0.62 kg m? rotates at q speed
2500 r.p.m. in a large heat insulated system, the temperature of which is 20°C.

@)Y If the K.E. of the flywheel is dissipated as frictional heat at the shaft bearings which
have a water equivalent of 1.9 kg, find the rise in the temperature of the bearings when the
Aywheel has come to rest.

(i) Calculate the greatest possible amount of the above heat which may be returned to the
flywheel as high-grade energy, showing how much of the original K.E. is now unavailable. What
would be the final rp.m. of the flywheel, if it is set in motion with this available energy ?

Solution. Moment of inertia of the flywheel, I = 0.62 kg m?

2nN;  2r x 2500

Initial angular velocity of the flywheel, ® = 50 60

= 261.8 rad/s.
Temperature of insulated system, T,=20+273=293 K
Water equivalent of shaft bearings =19 kg
(1) Initial available energy of the flywheel,

1
(KE)ipitior = 51 (*’12

2

= % x 0.62 x (261.8)% = 2.12 x 10* N.m = 21.2 kJ.

When this K.E. is dissipated as frictional heat, if A¢ is the temperature rise of the bearings,
we have
Water equivalent of bearings x rise in temperature = 21.2

ie. (19 x 4.18) AZ = 21.2
212
= —2X2 9670
or A= Toxals

Hence, rise in temperature of bearings = 2.67°C. (Ans.)
Final temperature of the bearings = 20 + 2.67 = 22.67°C.
(i) The maximum amount of energy which may be returned to the flywheel as high-grade

energy is,
295.67 203
(%)

1.9 x 4.18 293 T

AE.

295.67

293 ):’ = 0,096 kJ. (Ans.)

]

1.9 x 4.18 [(295.67 - 293) - 293 log, (

The amount of energy rendered unavailable is
UE. = (A'E‘)initial - (A‘E')returnable as high prade energy
=21.2 - 0.096 = 21.1 kJ.

Since the amount of energy returnable to the flywheet is 0.096 kJ, if , is the final angular
velocity, and the flywheel is set in motion with this energy, then

1
0.096 x 10° = = x 0.62 x w,”

2 0096x10%x2
. R E———

= 309.67 or w, = 17.59 rad/s.
0.62
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If N, is the final r.p.m. of the flywheel, then

N, 1759 x 60

Ny = = .p.m.
or 2 on 168 r.p.m

My =
i.e., Final r.p.m. of the flywheel = 168 r.p.m. (Ans.)

wExample 6.21. The air, in a steady flow, enters the system at a pressure of 8 bar and

180°C with a velocity of 80 m/s and leaves at 1.4 bar and 20°C with a velocity of 40 mis. The
temperature of the surroundings is 20°C and pressure is 1 bar. Determine :

(i) Reversible work and actual work assuming the process to be adiabatic ;

(if) Irreversibility and effectiveness of the system on the basis of 1 kg of air flow.
Take for air : c, = 1.005 kJ/kg K; R = 0.287 kJ/kg K.

Solution. Initial pressure of air, p, = 8 bar

Initial temperature of air, T, = 180 + 273 = 453 K
Final pressure of air, py = 1.4 bar

Final temperature, T,=Ty,=20+273=293K
Surroundings’ pressure, Pg = 1 bar

Mass of air =1lkg

Initial velocity of air, C, = 80 m/s

Final velocity of air, C, = 40 m/s.

@) Reversible work and actual work :
Availability of air at the inlet
2

c
(hy — hy)— Ty (8, — 5) + %

Cz
¢, (T, = T~ Ty (s, — 59 + 5~

2
i1 41
¢, log, [To] - R log, (Po}

453 8
1.005 log, 203 ) ~ 0.287 log, | 7
= 0.437 - 0.586 = — 0.159 kJ/kg K

Availability of air at the inlet

(sl - so)

802
= 1.005 (453 - 293) — 293 (-~ 0.159) + 2 % 10°
= 160.8 + 46.58 + 3.2 = 210.58 kJ
Availability at the exit
C,*

2
C 2
=— T, (3,— 8g) + =2
as h, = h, because T,=T,=293 K
Pq 14
Now 8, — 59 =— R log, P_u = — 0.287 log, q)=" 0.09656 kJ’kg K

Availability at the exit .

40
= — 293 (- 0.09656) + 2 %107 = 29.09 kl/kg
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Reversible/theoretical work which must be available,
W,., = 210.568 — 29.09 = 181.49 kJ. (Ans.)
Actual work developed can be calculated by using the energy equation for adiabatic steady
flow process as follows :

C’-C?
Wactual = (hl = h2) + 2

cl-c?
=cp(T1— T+ 9

2x10°
= 160.8 + 24 = 163.2 kJ/kg. (Ans.)
(ii) Irreversibility and effectiveness :

80% - 40?
= 1.005(453 — 293) +

Irreversibility, I=Ww_ -W

actual
= 181.49 — 163.2 = 18.29 kJ/kg. (Ans.)
» - qu&l _ 163.2
Effectiveness, € = W = 18149

rev
= 0.899 or 89.9%. (Ans.)

Example 6.22. Steam expands adiabatically in a turbine from 20 bar, 400°C to 4 bar,
250°C. Calculate :

(i) The isentropic efficiency of the process ;
tit) The loss of availability of the system assuming an atmospheric temperature of 20°C ;
(¢cit) The effectiveness of the process ;
The changes in K.E. and P.E. may be neglected.
Solution. Initial pressure of steam, p, = 20 bar

Initial temperature of steam, ¢, = 400°C
Final pressure of steam, D, = 4 bar
Final temperature of steam, t, = 250°C
Atmospheric temperature, = 20°C (= 293 K).

Initial state 1 : 20 bar, 400°C ; From steam tables,

h, = 382476 kd/kg ; s, = 7.127 ki/kg K
Final state 2 : 4 bar 250°C ; From steam tables,

hy = 2964.2 kJ/kg, s, = 7.379 kd/kg K

The process is shown as 1 to 2’ in Fig. 6.14

8, = 8, = 7.127 klkg K
Hence, interpolating,
7127 -6.930

m) (2860.5 — 2752.8)

hy = 2752.8 + (

0197
= 27528 + 0.241

x 107.7 = 2840.8 kd/kg.
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Ta

/XN
/ AN

—»5
Sy =8,
Fig.6.14
(i) Isentropic efficiency :
_ Actual work output
isen” ~  Igentropic work

_hy—hy 32476 -29642
" hy-hy 32476 - 28408

- 2834 _ 46966 or 69.66%. (Ans.)

406.8

(ii) Loss of availability :
Loss of availability =b -b,
=h) -k + Ty (s, ~ s,
= 32476 — 2964.2 + 293 (7.379 - 7.12T7)
= 283.4 + 73.88 = 857.28 kd/kg. (Ans.)
(iii) Effectiveness :

Effectiveness, €= w - = Py - h2’
b-b' bbb
_ 3247.6-2964.2

= 0.7918 or 79.18%. (Ans.)
357.9

1. ‘Available energy’ is the maximum portion of the energy which could be converted into useful work by ideal
processes which reduce the aystem to a dead state.

2. The theoretical maximum amount of work which can be obtained from a system at any state p, and T,
when eperating with a reservoir at the constant pressure and temperature p, and T, is called ‘availability’,
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4.

7

Energy is said to be degraded each time it flows through a finite temperature difference. That is, why the
second law of thermodynamics is sometimes called the law of the degradation of energy, and energy is said
to ‘run down hill’.

In non-flow systems :
Maximum work available,
Wioae = () = ttg) = T8, — 5) ~ polvg — v,)
=y +poby — Tysy) ~ (g + povy — Ty3p)

=a;-ua, -..per unit mags
The property a = u + py — T\s is called the non-flow availability function.
In steady-flow systems :
Maximum work available,
Winas = (= Tosy) = (hy = Tisy)
=b-b, ..per unit mass

The property, b = & — Tys is called the steady-flow availability function.
It may be noted that Gibb’s function g = (& — T’s) is a property of the system where availability function
@ = u +pgv ~ Ts is a composite property of the system and surroundings.

Again, a=u+pw-Ts
b=u+py-Tys
g=u+pv~-Ts

When state 1 proceeds to dead state (zero state)
a=b=g

The actual work which a system does is always less than the idealized reversible work, and the difference
between the two is called the irreversibility of the process. This is also sometimes referred to as degrada-
tion or dissipation.

Effectiveness is defined as the ratio of actual useful work to the maximum useful work.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer :

Gibb’s funection is expressed as

(@) (w + pv - Ts) (b) (v + pv — Tds)

(c) (u + pdv — Tds) (d) (u + pv — sdT).
Availability function is expressed as

(@)a=(u+pyw—Tps) (B) & = (u + pydv + Tds)
() a = (du + pgdv — Tids) d) a=(u+pyw+ Ts)

To increase work capacity of energy transferred by heat transfer from high temperature to low tempera-
ture

{a) lower temperature should be lowered keeping temperature difference same

(b) higher temperature should be increased keeping temperature difference same

{c) temperature difference should be increased (d) temperature difference should be decreased.
Helmholtz function is expressed as

(e) (w—-Ts) (b} (h — Ts)

(c) (- sdT + vdp) (d) (u + puv).

If a heat source at temperature T, transfers heat to a system at temperature THT, > T}), state which of the
following statements is not true ?

{@) Agygtem decreases (B) Agguree decreases

(¢) {Agystem + Agpurce) decreases (d} {Agystem + Asource) increases.
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Answers
1.(a) 2.(a) 3.(d) 4.(a) 5. (d).

THEORETICAL QUESTIONS

Explain the concept of available and unavailable energy. When does the system become dead ?

Define the term ‘availability’.

Is the availability function same for a non-flow and a flow process ?

Define availability function and find the relationship between availability function and change in availability.
How are the concepts of entropy and unavailable energy related to each other ?

Derive an expression for availability in non-flow systems.

Derive an expression for availability in steady flow systems.

Differentiate between availability function and Gibb's energy function.

Derive an expression for decrease in available energy when heat is transferred through a finite tempera-
ture difference.

Derive a general expression for irreversibility in () non-flow process, (i) steady flow process.

What is the effectiveness of a system and how does it differ from efficiency ?

UNSOLVED EXAMPLES

A system receives 10000 kJ of heat at 500 K from a source at 1000 K. The temperature of the surroundings
iz 300 K. Assaming that the temperature of the system and source remains constant during heat transfer,
find :
(i) The entropy production due to above mentioned heat transfer ;

(ii)} Decrease in available energy. [Ans, (i) 10 kJ/K ; (ii) 3000 kJ]
In a power station, saturated steam is generated at 252°C by transferring heat from the hot gases gener-
ated in the combustion chamber. The gases are cooled from 1100°C to 550°C during transferring the heat
for steam generation. Determine the increase in total entropy of the combined system of gas and steam and
increase in unavailable energy on the basis of one kg of steam generated. Assume water enters the boiler
at saturated condition and leaves as saturated steam. [Ans. 1.99 kJ/K ; 597 kd/kg of steam formed]
Air at 15°C is to be heated to 40°C by mixing it in steady flow with a quantity of air at 90°C. Assuming that
the mixing process is adiabatic and neglecting changes in kinetic and potential energy, calculate the ratio of
the mass flow of air initially at 90°C to that initially at 15°C. Calculate also the effectiveness of the heating
process, if the atmospheric temperature is 15°C. [Ans. 0.5, 0.327 or 32.7%])
A liquid of specific heat 6.3 kJ/kg K is heated at approximately constant pressure from 15°C to 70°C by
passing it through tubes which are immersed in a furnace. The furnace temperature is constant at 1400°C.
Caleulate the effectiveness of the heating process when the atmospheric temperature is 10°C.

[Ans. 0.121 or 12.1%]
500 kJ of heat from an infinite source at 1000 K is supplied to 2 kg of gas initially at 2 bar and 350 K in a
closed tank. Find the loss in available energy due to above heat transfer. Take :¢, (gas) = 0.8 kJ/kg K and
surrounding temperature = 300 K. [Ans, 157.5 kd]
In an heat exchanger of parallel flow type, water enters at 60°C and leaves at 80°C while oil of specific
gravity 0.8 enters at 250°C and leaves at 100°C. The specific heat of oil is 2.5 kJ/kg K and surrounding
temperature is 300 K. Determine the loss in availability on the basis of one kg of oil flow per second.

[Ans. — 59.9 kJ]

1 kg of ice at 0°C is mixed with 10 kg of water at 30°C. Determine the net increase in the entropy
and unavailable energy when the system reaches common temperature. Assume that surrounding
temperature is 10°C. Take, specific heat of water = 4,18 kd/kg K ; specific heat of ice = 2.1 k/kg K ;
latent heat of ice = 333.5 kd/kg. [Ans. 0.114 kJ/K, 32.30 kJ]
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1000 kJ of heat leaves hot gases at 1400°C from a fire box of a boiler and goes to steam at 250°C.
Atmospheric temperature is 20°C. Divide the energy into available and unavailable portions :
(i) Asit leaves the hot gases.

(ii) Asit enters the steam. [Ans. (i) 825 kJ, 175 kd ; (i) 440 kJ, 580 kJ]
In a certain process, a vapour, while eondensing at 420°C, transfers heat to water evaporating at 250°C.,
The resulting steam is used in a power cycle which rejects heat at 35°C. What is the fraction of the available
energy in the heat transferred from the proceas vapour at 420°C that is lost due to the irreversible heat
transfer at 250°C. [Ans. 0.26]
In a steam boiler, hot gases from a fire transfer heat to water which vapourizes at constant temperature.
In certain case, the gases are cooled from 1100°C to 550°C while the water evaporates at 220°C. The
specific heat of gases is 1.005 kJ/kg K, and the latent heat of water at 220°C is 1858.5 kJ/kg. All the heat
transferred from the gases goes to the water. How much does the total entropy of the combined system of
gas and water increase as a result of irreversible heat transfer ? Obtain the result on the basis of 1 kg of
water evaporated. If the temperature of the surroundings is 30°C find the increase in unavailable energy

due to irreversible heat transfer. [Ans. 2.045 kJ/K, 620 kJ]
Calculate the unavailable energy in 40 kg of water at 75°C with respect to the surroundings at 5°C, the
pressure being 1 atmosphere. - [Ans. 10420 kJ]

Calculate the decrease in available energy when 25 kg of water at 95°C mixes with 35 kg of water at 35°C,
the pressure being taken as constant and the temperature of the surroundings being 15°C.

Take ¢, of water = 4.18 kd/kg K. [Ans, 281.81 kJ]

2 kg of air at 5 bar, 80°C expands adiabatically in a closed system until its volume is doubled and its
temperature becomes equal to that of the surroundings which is at 1 bar, 5°C. For this process, determine :
(i) The maximum work ;
(if) The change in availability ;
(iii) Theirreversibility.
For air take : ¢, = 0.718 kd/kg K, u = ¢ T, where ¢, is constant and pV = mRT, where p is in bar, V volume
in m®, m mass in kg, R is constant equal to 0.287 kd/kg K, and T temperature in K.
{Ans. (i) 122.72 kdJ ; (i) 82.2 kJ ; (i) 15.2 kJ]

One kg of air at a pressure p, and temperature 900 K is mixed with 1 kg of air at the same pressure and
500 K

Determine the loss in availability if the surrounding temperature is 300 K. TAns. 54 kJ]
10 kg of water is heated in an insulated tank by a churning process from 300 K to 350 I Determine the loss
in avaitability for the process if the surrounding temperature is 300 K. [Ans. 1968 kJ]

A closed system contains 10 kg of air at 600 K and 5 bar. Determine the availability of the system if the
surrounding pressure and temperature are 1 bar and 300 K respectively.

If the air is cooled at constant pressure to the atmospheric temperature, determine the availability and
effectiveness. [Ans. 1464 kJ ;921 kdJ ; 0.63]

In a turbine air expands from 5 bar, 520°C to 1 bar, 300°C. During expansion 10 kd/kg of heat is lost to the
surroundings which is at 0.98 bar, 20°C. Neglecting kinetic and potential energy changes, determine per kg
of air :

(i) The decrease in availability ;
(i{) The maximum work ;
(iif) Theirreversibility.
For air take : c,= 1005kJkg K;h = cpT, where c, is constant.
[Ans. (¢} 260.7 kJ/kg ; (if) 260.7 kd/kg ; () 49.6 kJ/kg |
A centrifugal air compressor compresses air at the rate of 20 kg/min from 1 bar to 2 bar. The temperature

increases from 20°C to 120°C during the compreasion. Determine actual and minimum power required to
run the compressor. The surrounding air temperature is 20°C.

Neglect the heat interaction between the compressor and surroundings and changes in potential and
kinetic energy. [Ans, 24.2 kW]
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1 kg of air is compressed polytropically from 1 bar and 300 K to 7 bar and 380 K. Determine the irreversibil-
ity and effectiveness, assuming temperature and pressure as 300 K and 1 bar.
Take for air : ¢, = 1.005 kd/kg K, ¢, = 0.718 kd/kg K, R = 0.287 kd/kg K. [Ans. 1.25 kJ ; 0.924]
The moment of inertia of a flywheel is 0.54 kg-m? and it rotates at a speed of 3000 r.p.m. in a large heat
insulated system, the temperature of which is 15°C. If the kinetic energy of the flywheel is dissipated as
frictional heat at the shaft bearings which have & water equivalent of 2 kg, find the rise in the temperature
of the bearings when the flywheel has come to rest.
Calculate the greatest possible amount of the above heat which may be returned to the flywheel as high-
grade energy, showing how much of the original kinetic energy is now unavailable. What would be the final
r.p.m. of the flywheel, if it is set in motion with this available energy ?

[Ans. 3.19°C ; 0.1459 kJ ; 222 r.p.m.]
In a steady flow air enters the system at a pressure of 10 bar and 200°C with a velocity of 100 m/s and leaves
at 1.5 bar and 25°C with & velocity of 50 m/s. The temperature of the surroundings is 25°C and pressure is
1 bar, Determine reversible work and actual work assuming the process to be adiabatic.
Determine also the irreversibility and effectiveness of the system on the basis of one kg of air flow.
Take for air :¢, =1 kJ/kg K; R = 287 J/Akg K. [Ans. 200.65 kJ ; 178.75 kd/kg, 21.90 kJ/kg ; 0.894]
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Thermodynamic Relations

7.1. General aspects. 7.2. Fundamentals of partial differentiation. 7.3. Some general thermodynamic
relations. 7.4. Entropy equations (Tds equations). 7.5. Equations for internal energy and enthalpy.
7.6. Measurable quantities : Equation of state, co-efficient of expansion and compressibility,
specific heats, Joule-Thomson co-efficient 7.7. Clausius-Claperyon equation—Highlights—
Objective Type Questions—Exercises.

7.1. GENERAIL ASPECTS

In this chapter, some important thermodynamic relations are deduced ; principally those
which are useful when tables of properties are to be compiled from limited experimental data, those
which may be used when calculating the work and heat transfers associated with processes under-
gone by a liquid or solid. It should be noted that the relations only apply to a substance in the solid
phase when the stress, i.e. the pressure, is uniform in all directions ; if it is not, a single value for
the pressure cannot be alloted to the system as a whole.

Eight properties of a system, namely pressure (p), volume (v), temperature (T), internal
energy (u), enthalpy (h), entropy (s), Helmholtz function (f) and Gibbs function (g) have been
introduced in the previous chapters. A, f and g are sometimes referred to as thermodynamic
potentials. Both f and g are useful when considering chemieal reactions, and the former is of
fundamental importance in statistical thermodynamics. The Gibbs function is also useful when
considering processes involving a change of phase.

Of the above eight properties only the first three, i.e., p, v and T are directly measurable.
We shall find it convenient to introduce other combination of properties which are relatively easily
measurable and which, together with measurements of p, v and T, enable the values of the
remaining properties to be determined. These combinations of properties might be called ‘thermo-
dynamiec gradients’ ; they are all defined as the rate of change of one property with another while
a third is kept constant.

7.2. FUNDAMENTALS OF PARTIAL DIFFERENTIATION

Let three variables are represented by x, y and 2. Their functional relationship may be
expressed in the following forms :

flx,y,2)=0 0
x = xly, z) - (i)
¥ =y, 2) ..(iEd)
z=2z(x,y) i)
Let x is a function of two independent variables y and =
x = x{y, z) ) L{7.1)

341
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Then the differential of the dependent variable x is given by

dx dx
dr=|—| d +(-——) dz L(7.2)
[ayjz Y de ¥
where dx is called an exact differential.
ES (=)
If ay . =M and az ; =N
Then dx = Mdy + Ndz (7.3
Partial differentiation of M and N with respect to z and y, respectively, gives
oM &x N _ %
- = and o= T
o oydz dy dzdy
oM oN
or = (T4
dx is a perfect differential when eqn. (7.4) is satisfied for any function x.
Similarly if y = yix, z) and z = z(x, y) (7.5)
then from these two relations, we have
% ¥
dy = ax dx + az dz (76)
& az) d [E)z] d @
= e + | 3 aua 7.7
ax ¥ ay x Y
) o (), [(B) (32
dy = o 3 dx + az : &x ; + ay i Yy

o RGN

ox) {oz dy
or [@l ('é;)y (&l =-1 .{7.8)

In terms of p, v and T, the following relation holds good

(2) (2 (%)
v jp\ap ), \aT ), =-1 (7.9
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7.3. SOME GENERAL THERMODYNAMIC RELATIONS

The first law applied to a closed system undergoing a reversible process states that

dq = du + pdv
According to second law,

w- (7).,

Combining these equations, we get
Tds = du + pdv
or du = Tds - pdv -(7.10)
The properties k, fand g may also be put in terms of T, s, p and v as follows :
dh = du + pdv + vdp = Tds + vdp
Helmholtz free energy function,
df = du — Tds - sdT' 7.1
= - pdv — sdT L (7.12)
Gibb’s free energy function,
dg = dh - Tds — sdT = vdp - sdT -.(7.13)
Each of these equations is a result of the two laws of thermodynamics.
Since du, dh, df and dg are the exact differentials, we can express them as

[lﬂ] (EE]

du = as ! ds + av A dU,
(i’i) (E&]

dh = aspds+ Bpsdp’

(5, o+ r)
df = adev+ aTvdT’

% (3_8]
dg: ap - dp+ aT » dT.
Comparing these equations with (7.10) to (7.13) we may equate the corresponding co-efficients.
For example, from the two equations for du, we have

(5] -rem (3,
3 ), =Tand (3,) =-p

The complete group of such relations may be summarised as follows :

(%) - ) L
5). - (), L
3)-+- Gl L
[

af) Bg)
—| = = | = (71
3T —5= (aT ; (7.17)
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oT
Also, (é‘v‘l = ‘(%E)U ..{7.18)
o'y _[ov
g ] = g ) W(7.19)
dp ds
(ﬁ)v =[5L ..(7.20)
BUJ [as)
| === .{7.21)
(aT » ap

The equations (7.18} to (7.21) are known as Maxwell relations.

It must be emphasised that eqns. (7.14) to (7.21) do not refer to a process, but simply express
relations between properties which must be satisfied when any system is in a state of equilibrium.
Each partial differential co-efficient can itself be regarded as a property of state. The state may be
defined by a point on a three dimensional surface, the surface representing all possible states of
stable equilibrium.

7.4. ENTROPY EQUATIONS (Tds Equations)

Since entropy may be expressed as a fanction of any other two properties, e.g. temperature
T and specific volume v,

s=fAT, v
ds os
ie., ds = T dT + S . dv
os ds
or Tds=T 57 ) eT+T 3 . dv .L(7.22)

But for a reversible constant volume change
dg = ¢, dT), = T(ds),

ds
or Cv = T aT , ---(7.23)
os dp
But, Fn . =57 ’ [Maxzwell’s eqn. (7.20)]
Hence, substituting in eqn. (7.22), we get
Tds = ¢ dT + T P d (7.24)
s = ¢, dT + or ), v (7.

This is known as the first form of entropy equation or the first Tds equation,
Similarly, writing
s=fT, p)

ds ds
Tds =T T ) dl'+ T E . dp ...(7.25)
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os
where ¢, = T ["a}_)p ...(7.26)

ds v
Also (é;lr = (ﬁ)p [Maxwell's eqn. (7.21)]

whence, substituting in eqn. (7.25)

ov
Tds = ¢ dT - T (55) dp (71.27)
B

This is known as the second form of entropy equation or the second Tds equation.

7.5. EQUATIONS FOR INTERNAL ENERGY AND ENTHALPY
(i) Let w=fT, v

() er+ (5 ()
du = aT dTl + av TdU = CU dT + av - dv ---(7.28)
ou
To evaluate (g) letu=Ff(s v)
T
&)
av ) dU
) -2,
or T av aU A
&) -2 (3 - (7, (3]
But s oT w), =P

Hence [ JT (_} -p ..{7.29)

This is sometimes called the energy equation.
From equation (7.28), we get

dp
du = cdT + { (a’r] p} dv ..{(7.30)

du
Then du = ‘a: ds +

(ii) To evaluate dh we can follow similar steps as under
h=AT, p)
dh = [%) dT + [@-) dp
oT . ap Jp
oh

= cpdT + [?’;J dp (7.3
T
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oh
To find (_a;]T ; let k = fls, p)
() a (2
Then, dh = | 5 ) ds + (apl dp
oh oh ds oh
-GG (3)
%), -5, -5, 5
s R P jp dp p ap J,
Hence (%J =v-T [%’) ...{(7.32)
ap Jr P

From eqn. (7.31), we get

dh = ¢, dT + {v -T (—QE—-J }dp ..(7.33)
D

7.6. MEASURABLE QUANTITIES

Out of eight thermodynamic properties, as earlier stated, only p, v and T are directly
measurable. Let us now examine the information that can be obtained from measurements of
these primary properties, and then see what other easily measurable quantities can be introduced.

The following will be discussed :

(i) Equation of state

(i) Co-efficient of expansion and compressibility

(zif) Specific heats

(iv) Joule-Thomson co-efficient.

7.6.1. Equation of State

Let us imagine a series of experiments in which the volume of a substance is measured over
a range of temperatures while the pressure is maintained constant, this being repeated for various
pressures. The results might be represented graphically by a three-dimensional surface, or by a
family of constant pressure lines on a v-T diagram. It is useful if an equation can be found to
express the relation between p, v and 7, and this can always be done over a limited range of states.
No single equation will hold for all phases of a substance, and usually more than one equation is
required even in one phase if the accuracy of the equation is to match that of the experimental
results. Equations relating p, v and T are called equations of state or characteristic equations.
Accurate equations of state are usually complicated, a typical form being

B
=A+—+-5 + ...
e » U2

where A, B, C, ...... are functions of temperature which differ for different substances.

An equation of state of a particular substance is an empirical result, and it cannot be
deduced from the laws of thermodynamics. Nevertheless the general form of the equation may be
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predicted from hypotheses about the microscopic structure of matter. This type of prediction has
been developed to a high degree of precision for gases, and to a lesser extent for liguids and solids.
The simplest postulates about the molecular structure of gases lead to the concept of the perfect
gas which has the equation of state pv = RT. Experiments have shown that the behaviour of real
gases at low pressure with high temperature agrees well with this equation.

7.8.2. Co-efficient of Expansion and Compressibility

From p-v-T measurements, we find that an equation of state is not the only useful informa-
tion which can be obtained. When the experimental results are plotted as a series of constant
pressure lines on a v-T diagrams, as in Fig. 7.1 (a), the slope of a constant pressure line at any
given state is oT | - If the gradient is divided by the volume at that state, we have a value of a

property of the substance called its co-efficient of cubical expansion B. That is,

v v

Constant p _ 1 fov Constant p
lings p= v tar A

aT

_;T
{b)
Fig. 7.1. Determination of co-efficient of expansion from p-v-T data.
1{ ov
= —|— ..(7.34
v (BT ] o ( )

Value of } can be tabulated for a range of pressures and temperatures, or plotted graphically
as in Fig. 7.2 (b). For solids and liquids over the normal working range of pressure and tempera-
ture, the variation of B is small and can often be neglected. In tables of physical properties B is
usually quoted as an average value over a small range of temperature, the pressure being atmos-
pheric. This average co-efficient may be symbolised by B and it is defined by

Y2~ 4
B= -1
Fig. 7.2 (a) can be replotted to show the variation of volume with pressure for various

93_
P T . When

this gradient is divided by the volume at that state, we have a property known as the compressibility
K of the substance. Since this gradient is always negative, i.e., the volume of a substance always
decreases with increase of pressure when the temperature is constant, the compressibility is
usually made a positive quantity by defining it as

...(7.35)

constant values of temperature. In this case, the gradient of a curve at any state is
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va ve
Constant p
Constant T _ 1(av lines
lines K=- ; g r
Slops = [ dv } /
op Jp
» D »T

(a) (b)
Fig. 7.2. Determination of compressibility from p-T data.

K=- l(@) .(7.36)
v\ dp jp

K can be regarded as a constant for many purposes for solids and liquids. In tables of

properties it is often quoted as an average a value over a small range of pressure at atmospheric
temperature, i.e.,

* |

"7 u(pg-p)
When p and K are known, we have

3)),6), -

oT J,\ dv J,\dp )y -
du”

Since [—) =
aT »

Py _B
(aTl - £ (7.37)

When the equation of state is known, the co-efficient of cubical expansion and compressibility
can be found by differentiation. For a perfect gas, for example, we have

(2] B o (@z) _ET
oT J, ) P

§
v
(=¥
[~F]
el
S
L]
[}
|
&

p
1(ov R 1
Hence = v(aTl, = ;; =7
RT
and K=—}-[iv-} =—T=l.
vidp)rn P P

7.6.3. Specific Heats

Following are the three differential co-efficients which can be relatively easily determined
experimentally.
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ou

Consider the first quantity (ﬁ] . During a process at constant volume, the first law
14

informs us that an increase of internal energy is equal to heat supplied. If a calorimetric experi-
ment is conducted with a known mass of substance at constant volume, the quantity of heat @
required to raise the temperature of unit mass by AT may be measured. We can then write :

Au

[EJ = [%] . The quantity obtained this way is known as the mean specific heat at constant
v v

volume over the temperature range AT. It is found to vary with the conditions of the experiment,

i.e., with the temperature range and the specific volume of the substance. As the temperature

. du
range is reduced the value approaches that of (51—,] , and the true specific heat at constant
v

. d ..
volume is defined by ¢, = [#J - This is a property of the substance and in general its value
v

varies with the state of the substance, eg., with temperature and pressure.

According to first law of thermodynamics the heat supplied is equal to the increase of enthalpy
during a reversible constant pressure process. Therefore, a calorimetric experiment carried out
with a substance at constant pressure gives us, [%) = (—A%] which is the mean specific heat

P »
at constant pressure. As the range of temperature is made infinitesimally small, this becomes the

rate of change of enthalpy with temperaturé at a particular state defined by 7 and p, and this is

. oh
true specific heat at constant pressure defined by c, = (ﬁ) - ¢, also varies with the state, eg.,
D

with pressure and temperature.

The description of experimental methods of determining ¢, and ¢, can be found in texts on
physics. When solids and liquids are considered, it is not easy to measure ¢, owing to the stresses
set up when such a substance is prevented from expanding. However, a relation between ¢, €, B
and K can be found as follows, from which ¢, may be obtained if the remaining three properties
have been measured.

The First Law of Thermodynamics, for a reversible process states that
d@Q =du + p dv
Since we may write u = (T, v), we have

du du
du = (ﬁl dT + (EJT dv

ou Ju du
d@ = ('gfﬁl dT + {p +[$JT} dv=c, dT + {P +[$JT} dv

This is true for any reversible process, and so, for a reversible constant pressure process,

ou
dq = c,(dT), = ¢,(dT), + {IJ +[$)T} (dv),

i (5 GF)
ence e, —c,=P W Jy aT )

2) (%) - oo
Also (aTl = (glr =7 {p+(av T} , and therefore
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Now, from eqns. (7.34) and (7.87), we have

= ¢, = BZ" ..(7.38)

Thus at any state defined by T and v, ¢, can be found if ¢, f and K are known for the

substance at that state. The values of T, v and K are always positive and, although B may some-

times be negative (e.g., between 0° and 4°C water contracts on heating at constant pressure), p? is
always positive. It follows that c, is always greater than c,.

The other expressions for ¢, and ¢, can be obtained by using the equation (7.14) as follows :

Since c, = (éi] = (@t—] (E‘?-)
v~ {ar,), \as),\oT),

ds
We ha =T |— ...(7.39
e aer(2) as
_ oh oh ds
Similarly, ¢ = (—] = [_J [H)
P \dT), 3s J,\oT J,
ds
Hence, ¢, =T (w—) ..(7.40)
P aT J,

Alternative Expressions for Internal Energy and Enthalpy
(i) Alternative expressions for equations (7.29) and (7.32) can be obtained as follows :

ou dp

(auJT =T (a'r)v —p ..(1.29)
- (EEE

aT J,\ ov j\ap )r

or [ﬂ'ﬁ) __(_3_0_] [3_1’] BB

ar), " \eT) \aw)p " T K0T K
Substituting in eqn. (7.29), we get

du B

[av),. =T = -p (7.41)
Thus, du = c dT + [—TKE— p] dv .[7.28 (a)
Similarly, (i"-) cu-T [i‘i] .A7.32)

ap Jy oT ),

ou
But by definition, ('gf) = fv
P

oh
Hence Z =uwl-8D .(T7.42)
(ap], g
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Thus dh = ¢, dT + v(l - fT) dp «[7.31 ()]
(i) Since u=h-pu
- &G~ G) -
w®jr \pJp P Jp
sv—-vfiT+pKv—v
ou
Hence 3 = pKv ~ vfT ..(7.48)
P jp
7.6.4. Joule-Thomson Co-efficient
Let us consider the partial differential co-efficient ?1— . We know that if a fluid is flowing
p

through a pipe, and the pressure is reduced by a throttling progess, the enthalpies on either side of
the restriction may be equal.

The throttling process is illustrated in Fig. 7.3 (a). The velocity increases at the restriction,
with a consequent decrease of enthalpy, but this increase of kinetic energy is dissipated by friction,
as the eddies die down after restriction. The steady-flow energy equation implies that the enthalpy
of the fluid is restored to its initial value if the flow is adiabatic and if the velocity before restriction
is equal to that downstream of it. These conditions are very nearly satisfied in the following experi-
ment which is usually referred to as the Joule-Thomson experiment.

Constant h
lines

Pa T,

pPu Ty

Slope =

—» P

{a) b)
Fig. 7.3. Determination of Joule-Thomson co-efficient.

Through a porous plug (inserted in a pipe) a fluid is allowed to flow steadily from a high
pressure to a low pressure. The pipe is well lagged so that any heat flow to or from the fluid is
negligible when steady conditions have been reached. Furthermore, the velocity of the flow is kept
low, and any difference between the kinetic energy upstream and downstream of the plug is negligible.
A porous plug is used because the local increase of directional kinetic energy, caused by the
restriction, is rapidly converted to random molecular energy by viscous friction in fine passages
of the plug. Irregularities in the flow die out in a very short distance downstream of the plug, and
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temperature and pressure measurements taken there will be values for the fluid in a state of
thermodynamic equilibrium.

By keeping the upstream pressure and temperature constant at p, and T, the downstream
pressure p, is reduced in steps and the corresponding temperature T, is measured. The fluid in the
successive states defined by the values of p, and T, must always have the same value of the
enthalpy, namely the value of the enthalpy corresponding to the state defined by p, and T,. From
these results, points representing equilibrium states of the same enthalpy can be plotted on a T-s
diagram, and joined up to form a curve of constant enthalpy. The curve does not represent the
throttling process itself, which is irreversible. During the actual process, the fluid undergoes first
a decrease and then an increase of enthalpy, and no single value of the specific enthalpy can be
ascribed to all elements of the fluid. If the experiment is repeated with different values ofp,and T,
a family of curves may be obtained (covering a range of values of enthalpy) as shown in Fig. 7.3 (5).

The slope of a curve [Fig. 7.3 (b)] at any point in the field is a function only of the state of the

fluid, it is the Joule-Thomson co-efficient p, defined by p = (%—z] . The change of temperature due

to a throttling process is small and, if the fluid is a gas, it may ﬁe an increase or decrease. At any
particular pressure there is a temperature, the temperature of inversion, above which a gas can
never be cooled by a throttling process.

Both ¢, and p, as it may be seen, are defined in terms of p, T and h. The third partial
differential co-efficient based on these three properties is given as follows :

LG G),

doh
Hence 5; " =~ jc, .(7.44)

1 may be expressed in terms of Cp Py U and T as follows :
The property relation for dh is dh = T'ds + v dp
From second T ds equation, we have

(&)
Tds=c,dT-T \57) dp

v
dh=c,dT- |T{3F]| ~V| dp ..(7.45)
P

For a constant enthalpy process dh = 0. Therefore,

0= (c, dT), + Hv - (g%)p} dpl
N (c, dT), = HT (g%],, B v} dPL |

oY 1[.faw) ] -
W= (g]h = E';[T (ﬁ)p—v} (746)

For an ideal gas, pv=RT; v= ==
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or

or

Let h=flp, T

oh oh
Then dh = [5)7‘ dp + [ﬁ]p dT .(7.47)
(5r)
But oT » = Cp
oh
dh = % dp + ¢, dT
For throttling process, dh = 0
oh 9
0=|= (—’1) o A1.48)
op jp\aT 5, P
c = L(oh .(7.49)
P RAdp )p

oh
(”a;] is known as the constant temperature co-efficient.
T

7.7. CLAUSIUS-CLAPERYON EQUATION

Clausius-Claperyon equation i a relationship between the saturation pressure, tempera-

ture, the enthalpy of evaporation, and the specific volume of the two phases involved. This equa-
tion provides a basis for calculations of properties in a two-phase region. It gives the slope of a
curve separating the two phases in the p-T' diagram.

P4

Critical point

Liquid

Sublimation
curve

Fig. 7.4.p-T diagram.
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The Clausius-Claperyon equation can be derived in different ways. The method given below
involves the use of the Maxwell relation [eqn. (7.20)]

), - &),

Let us consider the change of state from saturated liquid to saturated vapour of a pure
substance which takes place at constant temperature. During the evaporation, the pressure and
temperature are independent of volume.

(3 -
dT = Ug -Uf

where, S, = Specific entropy of saturated vapour,
s; = Specific entropy of saturated liquid,
v, = Specific volume of saturated vapour, and

&
vy = Specific volume of saturated liquid.

k
.= =
Also, 8, 8= S = =

and V= Up=Up
where Sg = Increase in specific entropy,
Vg = Increase in specific volume, and
hﬁ; = Latent heat added during evaporation at saturation temperature T.

dp _Se =S S Pw .(1.50)
aT v, -vr v T.vg
This is known as Clausius-Claperyon or Claperyon equation for evaporation of liquids.

d
The derivative a-;':" is the slope of vapour pressure versus temperature curve. Knowing this slope

and the specific volume v_and v, from experimental data, we can determine the enthalpy of
evaporation, (hg - hf) which is relatively difficult to measure accurately.
Eqn. (7.50) is also valid for the change from a solid to liquid, and from solid to a vapour.
At very low pressures, if we assume v, =~ v, and the equation of the vapour is taken as
pv = RT, then eqn. (7.50) becomes

dp by by

dT = Tv, =~ RT? ~{7.51)
RT? dp
or hfg= T-d? ...(7.52)

Eqn. (7.52) may be used to obtain the enthalpy of vapourisation. This equation can be
rearranged as follows :

ap _ Hy dT
p R 'T?
Integrating the above equation, we get
J' dp _ hg (dT
p RIJT?

hell 1
ln -.'E.z.-z-ﬁ |:—— —} ...(7.53)
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Knowing the vapour pressure p, at temperature T, we can find the vapour pressure p,
corresponding to temperature T, from eqn. (7.53).

From eqn. (7.50), we see that the slope of the vapour pressure curve is always +ve,
since v, > vy and hfg is always +ve. Consequently, the vapour pressure of any simple compressible
substance increases with temperature.

— It can be shown that the slope of the sublimation curve is also +ve for any pure substance.

— However, the slope of the melting curve could be +ve or —ve.

— For a substance that contracts on freezing, such as water, the slope of the melting
curve will be negative.

wwExample 7.1. For a perfect gas, show that

¢, ¢, = [p +[%UJ)T](%J,, = puB + o [g_‘;)T

where P is the co-efficient of cubical/volume expansion.

Solution. The first law of thermodynamics applied to a closed system undergoing a reversible
process states as follows :

d@ = du + pdv ()

As per second law of thermodynamics,
4Q .

ds = (?Jm_ i)
Combining these equations (i) and (ii), we have

Tds = du + pdv
Also, since h=u+pv
- dh = du + pdv + vdp = Tds + vdp
Thus, Tds = du + pdv = dh — vdp

Now, writing relation for i taking T and v as independent, we have

ou Ju
du = (ﬁl} dT + (aUJT dv
Ju
=c,dl + (—a;]’r dv

Similarly, writing relation for h taking T and p as independent, we have

oh ch
on(2) e (2) o
oh
=c, dT + (B_P]r dp
In the equation for Tds, substituting the value of du and dh, we have

c,dT + [%l{' dv + pdv = <, dTl + [%)T dp — vdp

du oh
or c,dl + [P + [Bv ]T] dv = e, dT — [U - [FI’JT] dp
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Sinee the above equation is true for any process, therefore, it will also be true for the case

when dp = 0 and hence

d
(cp -c,) (dT)p = [P + (ﬁl”i]r:l (d.’u)p

v
or (e, —c,)= I:p'*(%% ] [ﬁ“
By definition, == ( g;.,)
The above equation becomes,
y-eom p+(3) | 9
du
or = puP + vp (ETJT

)

Proved.

s Example 7.2. Find the value of co-efficient of volume expansion B and isothermal

compressibility K for a Van der Waals’ gas obeying

(p-i-%)(v—b) = RT.
Solution. Van der Waals equation is

[p+:—2)(v—b) = RT

Rearranging this equation, we can write

RTa

v

Now for B we require ( u) . This can be found by writing the cyclic relation,

9u) (T} (op
oT ap ov =-1
p v
P
Henc (aU] BTJ
ence = -
T), == 15
v s
From the Van der Waals equation,
) _ R
aT,, =~ v-b
®) __ BT =
Also [av (u—b)2+ v
() -2 [
H = — = | =
ence ﬁ U(W v
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R
1 v—-b R -5
or = of-—— 20 | RUWw-d)  (apg)
) R s .28 BT “oaw-by
w-u°%
Also K__}_[Bv) -1 1 U Chad.)s (Ans.)
' T u\dp)p T v|2 _ _RT (T BT _gaw-bp "
v (v-bP

Example 7.8. Prove that the internal energy of an ideal gas is a function of temperature alone.
Solution. The equation of state for an ideal gas is given by

RT
p=EL
But w) () - [Eqn. (7.29)]
" v, =1 \oT )P qn. (7.

=T§—p =p-p=0QG
Thus, if the temperature remains constant, there is no change in internal energy with
volume (and therefore also with pressure). Hence internal energy (u) is a function of temperature
(T alone. ..Proved.
Example 7.4. Prove that specific heat at constant volume (c,) of a Van der Waals’ gas is a
function of temperature alone.
Solution. The Van der Waals equation of state is given by,

_ET o
Tu-b 2
») R
or o) = v-b
#*p
or 372 =0
d &
Now [E%_T =T[_8'T_I;]u

Hence (%%)T =0

Thus ¢, of 2 Van der Waals gas is independent of volume (and therefore of pressure also).
Hence it is a function of temperature alone.

wExample 7.5. Determine the following when a gas obeys Van der Waals’ equation,

(wf—z) - b)=RT
) Change in internal energy ; (i) Change in enthalpy ;
(iii) Change in entropy.
Solution. (i) Change in internal energy :
The change in internal energy is given by

du = ¢ dT + [T [g%] - p} dv
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1 1

Uy~ =c(Ty-T) +a (——-——J (Ans.)

Vi Vg
(i{) Change in enthalpy :
The change in enthalpy is given by

dh = ¢ dT + [v—T(%r)J dp

[‘% =0+v—-T(§%)p

Let us consider p = flu, T

0 ap
dp = ({TJT dv + (Wl dT
(dp)y = (—32] dv+0 asdl =0
vir

From equation (1),

r -
(dh)r = (v-T [58%) (dp)r
L P

Substituting the value of (dp), from eqn. (2), we get

3
()= [0-T (5;_‘),,

@) () @)«

Using the cyclic relation for p, v, T' which is

3,13

(or), (32, =),

(1)

-(2)

..(3)
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Substituting this value in eqn. (3), we get

d d
(dh)p = [v [3%)7- +T (Q%l] dv .(4)

For Van der Waals equation

(é‘BL_ a[(RTY a
) = w|0=5)" 2
RT .2

[ -———-———(U_b)z'irF (5)

[_82_) _ 3 RT a)| __R 8

o), "5 |\o-b o))" TP 0

Substituting the values of eqns. (5) and (6) in equation (1), we get

RT 2a R
(dh)T= l:v{—__—'f(v--b) +u—3}+T[v—b]:| dv

2 2 2
L(dh)r =—RT fa}-_l’;)g dv + 2% _[1‘-:—'2’— +RT .[1 (fb)

L vwp-by_ 1 1
N A
-2a (L——I—J+RT leg, [_I)g-—b)
by Ul—b
=bRT[ 1 1 ]-Za[—l—--l—]. (Ans.)

(vz~b)  (v,-b) vg v
iis) Change in entropy :
The change in entropy is given by

dT {9
ds = cp —T—+(-a-%] .dv

1]
For Van der Waals equation,

9, R
(5%)0 “v-b ...a8 per eqn. (6)
domc, 8Ty B
2 2rdT 2 dy
= —|+R
ds =c, j1[T:|+ w-b)

1 vy -
Example 7.8. The equation of state in the given range of pressure and temperature is
given by

-b
8, - 8, =c, log, [%:I + R log, [Ll;] (Ans.)

RT C

vE —-
p T

where C is constant.

Derive an expression for change of enthalpy and entropy for this substance during an
isothermal process.
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Solution. The general equation for finding dh is given by

v-T 9
dh =c, dT + |} an dp

fo o (3]

as dT = 0 for isothermal change.
From the given equation of state, we have

ov R 3C )
(a—T_Jp = ;+§'1-4_ ...(l)

2)(RT CY} RT 3C
o= (-5 -]

2
_ “1 (— %]dplrb;%[(pz-m}p

The general equation for finding ds is given by

dT (v
ds = ¢ T—(a*a—-.}p dp

2 2( ov
<=l 1= d
fies = [ ) (BTL ”L
as dT = 0 for isothermal changé.
Substituting the value from eqn. (i}, we get

2 (R 3C
(32_31)= IVJ-I ‘(;"’FJdP:L

-~ Rlog, (ﬁ) - [%J (0, -p) (Ans.)

Example 7.7. For a perfect gas obeying pv = RT, show that c, and ¢, are independent of
pressure.
Solution. Let 5 = AT, v)

ds ods
Then ds= |37 ) dT + §5Tdu
v
Also u=fT, v)
Then du = [g;‘—nl 4T + [g—ﬁ)r dv=c, dT+ [g—‘;)r dv
Also, du = Tds — pdv



THERMODYNAMIC RELATIONS

Equating the co-efficients of dT in the two equations of ds, we have

&=(£)
T \3T),

From eqn. (7.20),

Also p= —
- j}. -
[_._Ra zl 0 or (aE ] 0

This shows that ¢, is a function of T alone, or ¢, is independent of pressure.

e, =T [g—;—)p

P
3
From eqn. (7.21), (% =_(g%)p

&2
()

Again, v=

Also,

v e
and (gT—z]p =0; [g}lﬂ =0

This shows that ¢, is @ function of T alone or c, is independent of pressure.

361

...(Given)

...(Given)
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Example 7.8. Using the first Maxwell equation, derive the remaining three.
Solution. The first Maxwell relation is as follows :

o) _ (3

ov )~ \ds)
(1) Using the cyclic relation

ary () (as

o J \os jp T ) =~1

ds aT) (os .
dv f, =7 dv o \9T ), (i)

Substituting the value from eqn. (i) in eqn. (ii), we get

(5] - (%) (),

Using the chain rule,

) {9s) (aT .
(83] '(aTJ '(ap =1 (fv)
v v v

Substituting the value of eqn. (iv) in eqn. (i), we get

(%), - (3F)
ov e = \dT A

This is Maxwell Third relation.

(2) Again using the cydlic relation

(5).2) @) --
®),--(23)

Substituting the value from eqn. () into eqn. (v)

W) (a7 (& .
as ) =9 s- ap A ...(UL)

Again using the chain rule,

9T (av) (ap

o ) \p),\3T) =1
Substituting the value of (vi) into (v), we get

(5),-(%)

This is Maxwell second relation.

CIRCIRE)
& an ap J, avT=“‘1

(£} (Egn, 7.18)

(i)
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J (a J (80)
(aT - \9T ), "\ ap )r

- (&) L3 &),

Substituting the value from eqn. (i), we get
() - (1) () () (2
T, = (av Js (aT]u[apL (as)T
- (%)), 33), - &)
~ \ov jg\0s i \OT Ji\dp fr T ap Jr
(), -~ (%)
aT R “ T \p s

This is Maxwell fourth relation.
Example 7.9. Derive the following relations :

. y 3
(t)u:a—T[g%)v (u)h:g—T(g%)p
2
Gii)e,= - T [Ea:r%J (w)e,=~T [5‘;—5;}
v P

where a = Helmholtz function (per unit mass), and
& = Gibbs function (per unit mass}.
Solution. (i) Let a = v, T

- (%a da
Then da = [35)7. dv + [aTl dT
Also da = — pdv - sdT'
Comparing the co-efficients of d7T, we get
da
a7 ) =—8
Also a=u-Ts
da
or u=a+Ts=a—T(3Tl
da
Hence u=ag-T (Wl {Ans.)
(#) Let g=Ffp, D
- (% %
Then dg = (Bp ; dp + 3T : a7
Also dg = vdp — sdT

Comparing the co-efficients of dT", we get

og
3,
P

363
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g
Also h=g+Ts.-.-.g..-T[_..]
of p
Hence h=g-T [%) . (Ans.)
P
(iii) From eqn. (7.23), we have
)
¢, =T [g%l D)
()
Also 3T =-5
a Fa
or (ﬁl = - [55751} (ED)

From eqns. (i) and (ii), we get

a
c, =-T T2 - {Ans.)

2% .
c,=T [WJP )
g,
Also (ﬁag"‘) =—5
P
ds g
or (W)p = — [aTg] ...(ii)
P

From eqns. (i) and (if), we get
0
¢, =—T [571,152“] . {Ans)
)

Example 7.10. Find the expression for ds in terms of dT and dp.
Solution. Let s = AT, p)

Then ds = [—g;) .dT + [g% dp
D
As per Maxwell relation (7.21)

(%), =~ ),

Substituting this in the above equation, we get

_{os - (v ;
ds = [W)p T [aTJp' dp D)
The enthalpy is given by
dh = cpdT = Tds + vdp
Dividing by dT at constant pressure

(%) =¢,=T [%) +0 (as dp = 0 when pressure is constant)
p p
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Now substituting this in eqn. (i), we get

dT ( ds
ds = ¢ ?—[—a“l—,‘)P-dP

1{ dv
But B= F(W)
»

Substituting this in eqn. (i), we get

dT
ds = cp N ﬁUdP (Ans.)

Example 7.11. Derive the following relations :

N AR ] (9T ._ T8
o(5) - w (&) = &
where B = Co-efficient of cubical expansion, and

K = Isothermal compressibility.

Solution. (i) Using the Maxwell relation (7.19), we have
[G_T] _ (av) () (T
w) = (), - (#), (%)
P P
ds
Also €, = T [W)p

From eqn. (7.34), B= %[g%)
P

522

) o

ie., (ﬂ) T8 (Anse.)
ap j, ¢,

() Using the Maxwell relation (7.18)

() - (&), - (B (%),

ds

Also c=T(—

v BTU

= 1fav
K= u\3p )y

oT T(a
hen () .- 1(2)
o ) ¢, \dT j,

- @

(B8) - (@) 30, (e -

365

(i)

(Egqn. 7.23)

(Egn. 7.36)
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aT] -TB
| = . (Ans.)
[av Y 4

= Example 7.12. Derive the third Tds equation

aT oT
Tds =c, [7})-) dp +c, (-é-v—J dv
v P

and also show that this may be written as :

Tds:%-de+£‘-’—dv.

Bv
Solution. Let s=fip,v)
ds ds
Then ds = (é-ﬁldp + (E)p dv
ds ds
=T+ T —
or Tds (ap)v dp + [au)p dv
L ARE ds oT
-7 (), (F), 7 (%) (‘évl, @
d ¢
But (5’—,}) = # and (ﬁs] - #
v »
JT aT
Hence Tds = (——) dp+c ( dv ...Proved.
ki ap v P W b
Al QI_ -1 .a_T... Qg K
80 ap y = ? a_v = av ; ap r = ?—
v jp \ 0T b
a (%), - &
an dv L= By
Substituting these values in the above Tds equation, we get
Tds = e, K dp + % dv «Proved.
B Pv
Example 7.13. Using Maxwell relation derive the following Tds equation
Tds = ¢, ar-T (-%) dp. (U.P.S.C. 1988)
P
Solution, e=f(T, p)
Tds-T[g-i) dT+T(as) d (i)
= aT A Tp T p N
ds
where ¢, = T (-ﬁ;L
ds dv .
Also, [ ) =— (—) ...... Maxwell relation
P Jy T ),

Substituting these in egn. (i), we get
T, =c,dl-T (g,;,’—,] dp. (Ans.)
p



THERMODYNAMIC RELATIONS
Example 7.14. Derive the following relations
ap
(BTJ T(grf] =P
W) = ——
43 C!J

aT
Solution. [—87) can be expressed as follows :
u

(5

aT) _ '(%gl
-

W) u
ou f oaT j,
Also Tds = du + pdv
or du = Tds — pdv
du 88 du
or v =T |3 . [W)T
w) (&
or 80T=T o j. ~P
AN ES
or G‘TU“T oT ),

Dividing eqn. (i) by eqn. (if), we get

Also
d (is_] = (9 Maxwell relation
an ) = [5% -
Substituting these value in eqn. (iii), we get
P
aT T(gf} P
W= ———c—"— ...Proved.
wExample 7.15. Prove that for any fluid
(), -0 (B or () @@ e[
(l)(avT—v ) +T\3r) @\3p f, =v-T\3T),
Show that for a fluid obeying van der Waal’s equation

_RT o
p_v—b_;‘f

where R, a and b are constants

RTb 2a
h (enthalpy) = ;—3~ + AT

where f('T) is arbitrary.

367

(i)

(i)

AT
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Solution. We know that

ds= dT + (gg;-) dv [Eqn. (7.24)]

9
Also dh=Tds+uvdp=T [%dT +(§%l dv] + vdp

g
Le., dh=¢cdT+ T (3%] + dv + vdp
Putting dT = 0, we get

(%)T =T (g%l +v (%]T . Proved.
(i) (%L = (%% (%)T - [T (3%) ¥ U[%JT] [g;)—’}r
B -r(313)

w ()56

Eqn. (i) becomes

Now =-“—b-'3"2"

and (ﬁa%) - 553

ahJ ~-RT . 2 R
[ET = U[(v—b)z+-[;3— +T(U—b}

L RTv 2¢ RT _ -RTv_'_RT +2

T w82 v? v-b  (w-bP v-b

_ -RTv+RTw-b) 2 _ -RTv+RTv-RTb 2

(v - b¥ V2 (v-b)y v?
. oh\ _ -RTb 2
t.e., (av)T = —‘"—(U_b)z'l'vz
or h= RTb—gai+f('l‘) ...Proved.
v-b v

This shows h depends on T and v.
Example 7.16. Derive the following relations :

() -or (), ) () r )
(L)(ap)T-v T(an.--cp 3 ), 1)) avT'T aT ) ~P
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With the aid of eqn. (ii) show that
), (), o3
P Jp T A P\3p jr

The quantity c T is known as Joule-Thomson cooling effect. Show that this cooling
? \dp ),

effect for a gas obeying the equation of state (v - b) = Epz - -i;,qg is equal to [-'?1%) -b.
Solution. We know that
oh
[@)T =— e, [Eqn. (7.44))
1 ov
Also n= '&;’ I:T (ﬁ) - vJ ..[Egqn. (7.46)]
p
oh dv ov
(D;)T =- [T (‘a—T‘Jp - U] =v-T [ﬁ)‘p Proved.
X (%)
80 k= 1{3F),
oh aT
P jp =" % \Op
(#i) Let u=fT, v)
9 ou
du = [a;') dT + (au) dv
du .
=c, dl + [3;)1‘ dv i)
Also du = Tds — pdv

Substituting the value of Tds [from eqn. 7.24], we get

a
du=cudT+T(‘§%J dv - pdv

=c,dT+ {T (33{.’:) - p] dv -..(id)
From (i) and (ii), we get '
(%%)T =7 (‘gﬁ*l ~-p ...Proved.
o &) -6L6
T

or

[Bu
or 5

h\i-._.__/
[}
TN
¥
R
. b
3
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ap) (o) () _
We know that (aU)T (aT)p(ap]u =-1

[EB_) % =_[_€v_)
. T J\ap)y \3T),
du v v
Also (—) =-T (—] - [———) ...Already proved.
Pt o p d op T
and = —-l—liT (a—;) —v} ..[Eqn. (7.46)]
p P R
Now v-b= RT _C ..[Given]
p T2
(%) -R.2¢
aT ), » 78

Substituting this value in the expression of p above, we get

1[ [R 20] ]
p= =T+ -0
Cp p T

_3C

R 2C R C
=T =+=]-==—4—~— ~-b="—"-b
or He, (p+T3) P Tz T2
aT) 3C
o == | = — —b..Proved.
l' cp (ap h T2

Example 7.17. The pressure on the block of copper of 1 kg is increased from 20 bar to 800
bar in a reversible process maintaining the temperature constant ot 15°C. Determine the following :

(i) Work done on the copper during the process,
(it) Change in entropy, (iii) The heat transfer,
(iv) Change in internal energy, and wife, - c,) for this change of state.

Given : B (Volume expansitivity = 5 x 10°/K, K (thermal compressibility) = 8.6 x 102 m?/N
and v (specific volume) = 0.114 x 10~ m®/kg.

Solution. (i) Work done on the copper, W :
Work done during isothermal compression is given by

2
W= Il pdv
The isothermal compressibility is given by

Since v and K remain essentially constant
W=- YK
2
_ 0114x1073 x86x 10712

= > [(800 x 105)2 — (20 x 10%)%]

(p22 - Plz)
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0114 x86x 10719
2
0.114x 8.6 x 107

=— 5 (640000 - 400) = — 3.135 J/’kg. (Ans.)

The negative sign indicates that the work is done on the copper block.
{ii) Change in entropy :

The change in entropy can be found by using the following Maxwell relation :
os ov 1(dv
(), == () = 2(3p) =-wwes i), -0
(ds)y = — vp (dp)y
Integ'ratmg the above equation, assuming v and B remaining constant, we get
8y -8y =~ U Dy~ py)y
== 0,114 x 10-% x 5 x 107 [800 x 10° — 20 x 10%]
=—0.114 x 1072 x 5 (800 - 20) = — 0,446 J’kg K. (Ans.)
(iii) The heat transfer, Q :
For a reversible isothermal process, the heat transfer is given by :
Q = T(s, — 5,) = (156 + 273X~ 0.4446) = — 128 J/kg. (Ans.)
(iv) Change in internal energy, du :
The change in internal energy is given by :
=Q-W
= 128 - {- 3.135) = — 124.8 J/’kg. (Ans.)

x 1010 [(800) — (20)%]

(vhe,~-c,:

The difference between the specific heat is given by :

¢ -, = 92?1 ... [Eqn. (7.38)]

(5 x107%)2 % (15 + 273) x 0114 x 1073
86x10-12 = 9.54 J’kkg K. (Ans.)

Example 7.18. Using Clausius-Claperyon’s equation, estimate the enthalpy of vapourisation.
The following data is given :

At 200°C : v, = 0.1274 milkg ; v, = 0.001157 milkg ; [j;] 32 kPa/K.

Solution. Using the equation

ap)_ Ry
dr ) Tv, —vp)

where, h; = Enthalpy of vapourisation.
Substituting the various values, we get

h
32 x 10% = 1
(200 + 273X0.1274 — 0.001157)
hy, = 32 x 10% (200 + 273)0.1274 — 0.001167) J
= 1910.8 x 10% J/kg = 1910.8 kJ/kg. (Ans.)
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Example 7.19. An ice skate is able to glide over the ice because the skate blade exerts
sufficient pressure on the ice that a thin layer of ice is melted. The skate blade then glides over
this thin melted water layer. Determine the pressure an ice skate blade must exert to allow
smooth ice skate at — 10°C.

The following data is given for the range of temperatures and pressures involved :

Prstice) = 334 klkg ; vy, = 1 x 10 mPlkg ; v, = 1.01 x 10° m®/kg.
Solution. Since it is a problem of phase change from solid to liquid, therefore, we can use
Clausius-Claperyon equation given below :
dp Py 1
dl v, T
Multiplying both the sides by dT and integrating, we get

[ <t frar

fu1 Ufg
T. ,
or -p,)= ﬁfi lo [-2) )
®:-p, Ope Ee T,
But at p,=1latm, ¢, =0°C
Thus, p; = 1013 bar, T1 =0+2713 =273 K

Py=2T,=-10+273 =263 K
Substituting these values in eqn. (i), we get

34 x10° 263
s 934x107 263
(pg - 1013 x 10°) = 777 o7y * log, {273

4x10° 273
= 33 O_OLml x loge [§§§ = 12.46 x 10° N/m?

or Do = 12.46 x 105 + 1.013 x 10°
= 13.47 x 10° N/m? or 13.47 bar. (Ans.)

This pressure is considerably high. It can be achieved with ice skate blade by having only a
small portion of the blade surface in contact with the ice at any given time. If the temperature
drops lower than — 10°C, say — 15°C, then it is not possible to generate sufficient pressure to melt
the ice and conventional ice skating will not be possible.

Example 7.20. For mercury, the following relation exists between saturation pressure
{bar) and saturation temperature (K) :

log, p = 7.0323 — 3276.6/T- 0.652 log,, T

Calculate the specific volume v ¢ of saturation mercury vapour at 0.1 bar.

Given that the latent heat of vapourisation at 0.1 bar is 294.5¢4 kJikg.

Neglect the specific volume of saturated mercury liquid.

Solution, Latent heat of vapourisation, k. = 294.54 kJ/kg (at 0.1 bar) ...(given)
Using Clausius-Claperyon equation
dp _ by _ by D)

ar vl T -y T
Since vy is neglected, therefore eqn. (i) becomes

dp by

ar = T
Now, log,, p =7.0323 - 32;6'6 - 0652 log,, T




